| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hblem | Structured version Visualization version GIF version | ||
| Description: Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2375. See hblemg 2866 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| hblem.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| hblem | ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hblem.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | hbsbw 2170 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴) |
| 3 | clelsb1 2860 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
| 4 | 3 | albii 1818 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑧 ∈ 𝐴) |
| 5 | 2, 3, 4 | 3imtr3i 291 | 1 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clel 2808 |
| This theorem is referenced by: bnj1311 34997 |
| Copyright terms: Public domain | W3C validator |