![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hblem | Structured version Visualization version GIF version |
Description: Change the free variable of a hypothesis builder. Lemma for nfcrii 2918. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
hblem.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
hblem | ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hblem.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | hbsb 2490 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴) |
3 | clelsb3 2886 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
4 | 3 | albii 1783 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑧 ∈ 𝐴) |
5 | 2, 3, 4 | 3imtr3i 283 | 1 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1506 [wsb 2016 ∈ wcel 2051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clel 2839 |
This theorem is referenced by: bnj1311 31973 |
Copyright terms: Public domain | W3C validator |