MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hblem Structured version   Visualization version   GIF version

Theorem hblem 2868
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2370. See hblemg 2869 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypothesis
Ref Expression
hblem.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
hblem (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑧   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21hbsbw 2167 . 2 ([𝑧 / 𝑦]𝑦𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦𝐴)
3 clelsb1 2864 . 2 ([𝑧 / 𝑦]𝑦𝐴𝑧𝐴)
43albii 1819 . 2 (∀𝑥[𝑧 / 𝑦]𝑦𝐴 ↔ ∀𝑥 𝑧𝐴)
52, 3, 43imtr3i 291 1 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2065  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-11 2152
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-sb 2066  df-clel 2814
This theorem is referenced by:  bnj1311  33053
  Copyright terms: Public domain W3C validator