Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hblem | Structured version Visualization version GIF version |
Description: Change the free variable of a hypothesis builder. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) Add disjoint variable condition to avoid ax-13 2379. See hblemg 2883 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
hblem.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
hblem | ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hblem.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | hbsbw 2173 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴) |
3 | clelsb3 2879 | . 2 ⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | |
4 | 3 | albii 1821 | . 2 ⊢ (∀𝑥[𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑧 ∈ 𝐴) |
5 | 2, 3, 4 | 3imtr3i 294 | 1 ⊢ (𝑧 ∈ 𝐴 → ∀𝑥 𝑧 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 [wsb 2069 ∈ wcel 2111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-11 2158 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-sb 2070 df-clel 2830 |
This theorem is referenced by: bnj1311 32537 |
Copyright terms: Public domain | W3C validator |