MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hblemg Structured version   Visualization version   GIF version

Theorem hblemg 2870
Description: Change the free variable of a hypothesis builder. Usage of this theorem is discouraged because it depends on ax-13 2372. See hblem 2869 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by NM, 21-Jun-1993.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
hblemg.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
hblemg (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑧)

Proof of Theorem hblemg
StepHypRef Expression
1 hblemg.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21hbsb 2529 . 2 ([𝑧 / 𝑦]𝑦𝐴 → ∀𝑥[𝑧 / 𝑦]𝑦𝐴)
3 clelsb1 2866 . 2 ([𝑧 / 𝑦]𝑦𝐴𝑧𝐴)
43albii 1823 . 2 (∀𝑥[𝑧 / 𝑦]𝑦𝐴 ↔ ∀𝑥 𝑧𝐴)
52, 3, 43imtr3i 290 1 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator