MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfreq Structured version   Visualization version   GIF version

Theorem hbxfreq 2860
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1820 for equivalence version. (Contributed by NM, 21-Aug-2007.)
Hypotheses
Ref Expression
hbxfr.1 𝐴 = 𝐵
hbxfr.2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
Assertion
Ref Expression
hbxfreq (𝑦𝐴 → ∀𝑥 𝑦𝐴)

Proof of Theorem hbxfreq
StepHypRef Expression
1 hbxfr.1 . . 3 𝐴 = 𝐵
21eleq2i 2821 . 2 (𝑦𝐴𝑦𝐵)
3 hbxfr.2 . 2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
42, 3hbxfrbi 1820 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532   = wceq 1534  wcel 2099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-cleq 2720  df-clel 2806
This theorem is referenced by:  bnj1317  34447  bnj1441  34466  bnj1441g  34467  bnj1309  34648
  Copyright terms: Public domain W3C validator