| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbxfreq | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfrbi 1825 for equivalence version. (Contributed by NM, 21-Aug-2007.) |
| Ref | Expression |
|---|---|
| hbxfr.1 | ⊢ 𝐴 = 𝐵 |
| hbxfr.2 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hbxfreq | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 3 | hbxfr.2 | . 2 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | |
| 4 | 2, 3 | hbxfrbi 1825 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: bnj1317 34857 bnj1441 34876 bnj1441g 34877 bnj1309 35058 |
| Copyright terms: Public domain | W3C validator |