![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleqh | Structured version Visualization version GIF version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2733. See also cleqf 2940. (Contributed by NM, 26-May-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2019.) Remove dependency on ax-13 2380. (Revised by BJ, 30-Nov-2020.) |
Ref | Expression |
---|---|
cleqh.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
cleqh.2 | ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
cleqh | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | cleqh.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
4 | 3 | nf5i 2146 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | cleqh.2 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | |
6 | 5 | nf5i 2146 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
7 | 4, 6 | nfbi 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
8 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
11 | 2, 7, 10 | cbvalv1 2347 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | bitr4i 278 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eqabbOLD 2885 |
Copyright terms: Public domain | W3C validator |