| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbieq12d2 | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017.) (Proof shortened by Wolf Lammen, 24-Jun-2021.) |
| Ref | Expression |
|---|---|
| ifbieq12d2.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq12d2.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifbieq12d2.3 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifbieq12d2 | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 2 | ifbieq12d2.3 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) | |
| 3 | 1, 2 | ifeq12da 4541 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| 4 | ifbieq12d2.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ifbid 4531 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐷) = if(𝜒, 𝐶, 𝐷)) |
| 6 | 3, 5 | eqtrd 2769 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ifcif 4507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-un 3938 df-if 4508 |
| This theorem is referenced by: ofccat 14991 itgeq12dv 34269 sgnneg 34484 |
| Copyright terms: Public domain | W3C validator |