Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifbieq12d2 | Structured version Visualization version GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017.) (Proof shortened by Wolf Lammen, 24-Jun-2021.) |
Ref | Expression |
---|---|
ifbieq12d2.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
ifbieq12d2.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifbieq12d2.3 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ifbieq12d2 | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12d2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
2 | ifbieq12d2.3 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) | |
3 | 1, 2 | ifeq12da 4492 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
4 | ifbieq12d2.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 4 | ifbid 4482 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐷) = if(𝜒, 𝐶, 𝐷)) |
6 | 3, 5 | eqtrd 2778 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ofccat 14680 itgeq12dv 32293 sgnneg 32507 |
Copyright terms: Public domain | W3C validator |