| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbieq12d2 | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017.) (Proof shortened by Wolf Lammen, 24-Jun-2021.) |
| Ref | Expression |
|---|---|
| ifbieq12d2.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| ifbieq12d2.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifbieq12d2.3 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifbieq12d2 | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12d2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 2 | ifbieq12d2.3 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) | |
| 3 | 1, 2 | ifeq12da 4539 | . 2 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| 4 | ifbieq12d2.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ifbid 4529 | . 2 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐷) = if(𝜒, 𝐶, 𝐷)) |
| 6 | 3, 5 | eqtrd 2771 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐶, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-if 4506 |
| This theorem is referenced by: ofccat 14993 sgnneg 32817 itgeq12dv 34363 |
| Copyright terms: Public domain | W3C validator |