Proof of Theorem sgnneg
Step | Hyp | Ref
| Expression |
1 | | recn 10892 |
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
2 | 1 | negeq0d 11254 |
. . . 4
⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ -𝐴 = 0)) |
3 | 2 | bicomd 222 |
. . 3
⊢ (𝐴 ∈ ℝ → (-𝐴 = 0 ↔ 𝐴 = 0)) |
4 | | eqidd 2739 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ -𝐴 = 0) → 0 =
0) |
5 | 3 | necon3bbid 2980 |
. . . . 5
⊢ (𝐴 ∈ ℝ → (¬
-𝐴 = 0 ↔ 𝐴 ≠ 0)) |
6 | 5 | biimpa 476 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ¬
-𝐴 = 0) → 𝐴 ≠ 0) |
7 | | lt0neg2 11412 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 ↔ -𝐴 < 0)) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
9 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ) |
10 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → 0 ∈
ℝ) |
11 | 9, 10 | lttri2d 11044 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
12 | 11 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
13 | | ltnsym2 11004 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → ¬ (𝐴
< 0 ∧ 0 < 𝐴)) |
14 | 10, 13 | mpdan 683 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → ¬
(𝐴 < 0 ∧ 0 <
𝐴)) |
15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ¬ (𝐴 < 0 ∧ 0 < 𝐴)) |
16 | 12, 15 | jca 511 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴))) |
17 | | pm5.17 1008 |
. . . . . . . . 9
⊢ (((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)) ↔ (𝐴 < 0 ↔ ¬ 0 < 𝐴)) |
18 | 16, 17 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ↔ ¬ 0 <
𝐴)) |
19 | 18 | con2bid 354 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ ¬ 𝐴 < 0)) |
20 | 8, 19 | bitr3d 280 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (-𝐴 < 0 ↔ ¬ 𝐴 < 0)) |
21 | 20 | ifbid 4479 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(¬ 𝐴 < 0, -1,
1)) |
22 | | ifnot 4508 |
. . . . 5
⊢ if(¬
𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1) |
23 | 21, 22 | eqtrdi 2795 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1,
-1)) |
24 | 6, 23 | syldan 590 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ ¬
-𝐴 = 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1,
-1)) |
25 | 3, 4, 24 | ifbieq12d2 4490 |
. 2
⊢ (𝐴 ∈ ℝ → if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))) |
26 | | renegcl 11214 |
. . 3
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
27 | | rexr 10952 |
. . 3
⊢ (-𝐴 ∈ ℝ → -𝐴 ∈
ℝ*) |
28 | | sgnval 14727 |
. . 3
⊢ (-𝐴 ∈ ℝ*
→ (sgn‘-𝐴) =
if(-𝐴 = 0, 0, if(-𝐴 < 0, -1,
1))) |
29 | 26, 27, 28 | 3syl 18 |
. 2
⊢ (𝐴 ∈ ℝ →
(sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1))) |
30 | | df-neg 11138 |
. . . 4
⊢
-(sgn‘𝐴) = (0
− (sgn‘𝐴)) |
31 | 30 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℝ →
-(sgn‘𝐴) = (0 −
(sgn‘𝐴))) |
32 | | rexr 10952 |
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
33 | | sgnval 14727 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (sgn‘𝐴) =
if(𝐴 = 0, 0, if(𝐴 < 0, -1,
1))) |
34 | 32, 33 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) |
35 | 34 | oveq2d 7271 |
. . 3
⊢ (𝐴 ∈ ℝ → (0
− (sgn‘𝐴)) = (0
− if(𝐴 = 0, 0,
if(𝐴 < 0, -1,
1)))) |
36 | | ovif2 7351 |
. . . . 5
⊢ (0
− if(𝐴 = 0, 0,
if(𝐴 < 0, -1, 1))) =
if(𝐴 = 0, (0 − 0), (0
− if(𝐴 < 0, -1,
1))) |
37 | | biid 260 |
. . . . . 6
⊢ (𝐴 = 0 ↔ 𝐴 = 0) |
38 | | 0m0e0 12023 |
. . . . . 6
⊢ (0
− 0) = 0 |
39 | | ovif2 7351 |
. . . . . . 7
⊢ (0
− if(𝐴 < 0, -1,
1)) = if(𝐴 < 0, (0
− -1), (0 − 1)) |
40 | | biid 260 |
. . . . . . . 8
⊢ (𝐴 < 0 ↔ 𝐴 < 0) |
41 | | 0cn 10898 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
42 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
43 | 41, 42 | subnegi 11230 |
. . . . . . . . 9
⊢ (0
− -1) = (0 + 1) |
44 | | 0p1e1 12025 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
45 | 43, 44 | eqtr2i 2767 |
. . . . . . . 8
⊢ 1 = (0
− -1) |
46 | | df-neg 11138 |
. . . . . . . 8
⊢ -1 = (0
− 1) |
47 | 40, 45, 46 | ifbieq12i 4483 |
. . . . . . 7
⊢ if(𝐴 < 0, 1, -1) = if(𝐴 < 0, (0 − -1), (0
− 1)) |
48 | 39, 47 | eqtr4i 2769 |
. . . . . 6
⊢ (0
− if(𝐴 < 0, -1,
1)) = if(𝐴 < 0, 1,
-1) |
49 | 37, 38, 48 | ifbieq12i 4483 |
. . . . 5
⊢ if(𝐴 = 0, (0 − 0), (0 −
if(𝐴 < 0, -1, 1))) =
if(𝐴 = 0, 0, if(𝐴 < 0, 1,
-1)) |
50 | 36, 49 | eqtri 2766 |
. . . 4
⊢ (0
− if(𝐴 = 0, 0,
if(𝐴 < 0, -1, 1))) =
if(𝐴 = 0, 0, if(𝐴 < 0, 1,
-1)) |
51 | 50 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℝ → (0
− if(𝐴 = 0, 0,
if(𝐴 < 0, -1, 1))) =
if(𝐴 = 0, 0, if(𝐴 < 0, 1,
-1))) |
52 | 31, 35, 51 | 3eqtrd 2782 |
. 2
⊢ (𝐴 ∈ ℝ →
-(sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))) |
53 | 25, 29, 52 | 3eqtr4d 2788 |
1
⊢ (𝐴 ∈ ℝ →
(sgn‘-𝐴) =
-(sgn‘𝐴)) |