Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnneg Structured version   Visualization version   GIF version

Theorem sgnneg 32765
Description: Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
sgnneg (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))

Proof of Theorem sgnneg
StepHypRef Expression
1 recn 11165 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21negeq0d 11532 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ -𝐴 = 0))
32bicomd 223 . . 3 (𝐴 ∈ ℝ → (-𝐴 = 0 ↔ 𝐴 = 0))
4 eqidd 2731 . . 3 ((𝐴 ∈ ℝ ∧ -𝐴 = 0) → 0 = 0)
53necon3bbid 2963 . . . . 5 (𝐴 ∈ ℝ → (¬ -𝐴 = 0 ↔ 𝐴 ≠ 0))
65biimpa 476 . . . 4 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → 𝐴 ≠ 0)
7 lt0neg2 11692 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ -𝐴 < 0))
9 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
10 0red 11184 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 0 ∈ ℝ)
119, 10lttri2d 11320 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
1211biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
13 ltnsym2 11280 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1410, 13mpdan 687 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1514adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1612, 15jca 511 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)))
17 pm5.17 1013 . . . . . . . . 9 (((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)) ↔ (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1816, 17sylib 218 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1918con2bid 354 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ ¬ 𝐴 < 0))
208, 19bitr3d 281 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (-𝐴 < 0 ↔ ¬ 𝐴 < 0))
2120ifbid 4515 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(¬ 𝐴 < 0, -1, 1))
22 ifnot 4544 . . . . 5 if(¬ 𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1)
2321, 22eqtrdi 2781 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
246, 23syldan 591 . . 3 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
253, 4, 24ifbieq12d2 4526 . 2 (𝐴 ∈ ℝ → if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
26 renegcl 11492 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
27 rexr 11227 . . 3 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
28 sgnval 15061 . . 3 (-𝐴 ∈ ℝ* → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
2926, 27, 283syl 18 . 2 (𝐴 ∈ ℝ → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
30 df-neg 11415 . . . 4 -(sgn‘𝐴) = (0 − (sgn‘𝐴))
3130a1i 11 . . 3 (𝐴 ∈ ℝ → -(sgn‘𝐴) = (0 − (sgn‘𝐴)))
32 rexr 11227 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
33 sgnval 15061 . . . . 5 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3432, 33syl 17 . . . 4 (𝐴 ∈ ℝ → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3534oveq2d 7406 . . 3 (𝐴 ∈ ℝ → (0 − (sgn‘𝐴)) = (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
36 ovif2 7491 . . . . 5 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1)))
37 biid 261 . . . . . 6 (𝐴 = 0 ↔ 𝐴 = 0)
38 0m0e0 12308 . . . . . 6 (0 − 0) = 0
39 ovif2 7491 . . . . . . 7 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, (0 − -1), (0 − 1))
40 biid 261 . . . . . . . 8 (𝐴 < 0 ↔ 𝐴 < 0)
41 0cn 11173 . . . . . . . . . 10 0 ∈ ℂ
42 ax-1cn 11133 . . . . . . . . . 10 1 ∈ ℂ
4341, 42subnegi 11508 . . . . . . . . 9 (0 − -1) = (0 + 1)
44 0p1e1 12310 . . . . . . . . 9 (0 + 1) = 1
4543, 44eqtr2i 2754 . . . . . . . 8 1 = (0 − -1)
46 df-neg 11415 . . . . . . . 8 -1 = (0 − 1)
4740, 45, 46ifbieq12i 4519 . . . . . . 7 if(𝐴 < 0, 1, -1) = if(𝐴 < 0, (0 − -1), (0 − 1))
4839, 47eqtr4i 2756 . . . . . 6 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, 1, -1)
4937, 38, 48ifbieq12i 4519 . . . . 5 if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5036, 49eqtri 2753 . . . 4 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5150a1i 11 . . 3 (𝐴 ∈ ℝ → (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5231, 35, 513eqtrd 2769 . 2 (𝐴 ∈ ℝ → -(sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5325, 29, 523eqtr4d 2775 1 (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cmin 11412  -cneg 11413  sgncsgn 15059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-sgn 15060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator