Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnneg Structured version   Visualization version   GIF version

Theorem sgnneg 34522
Description: Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
sgnneg (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))

Proof of Theorem sgnneg
StepHypRef Expression
1 recn 11243 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21negeq0d 11610 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ -𝐴 = 0))
32bicomd 223 . . 3 (𝐴 ∈ ℝ → (-𝐴 = 0 ↔ 𝐴 = 0))
4 eqidd 2736 . . 3 ((𝐴 ∈ ℝ ∧ -𝐴 = 0) → 0 = 0)
53necon3bbid 2976 . . . . 5 (𝐴 ∈ ℝ → (¬ -𝐴 = 0 ↔ 𝐴 ≠ 0))
65biimpa 476 . . . 4 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → 𝐴 ≠ 0)
7 lt0neg2 11768 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
87adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ -𝐴 < 0))
9 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
10 0red 11262 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 0 ∈ ℝ)
119, 10lttri2d 11398 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
1211biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
13 ltnsym2 11358 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1410, 13mpdan 687 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1514adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1612, 15jca 511 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)))
17 pm5.17 1013 . . . . . . . . 9 (((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)) ↔ (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1816, 17sylib 218 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1918con2bid 354 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ ¬ 𝐴 < 0))
208, 19bitr3d 281 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (-𝐴 < 0 ↔ ¬ 𝐴 < 0))
2120ifbid 4554 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(¬ 𝐴 < 0, -1, 1))
22 ifnot 4583 . . . . 5 if(¬ 𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1)
2321, 22eqtrdi 2791 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
246, 23syldan 591 . . 3 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
253, 4, 24ifbieq12d2 4565 . 2 (𝐴 ∈ ℝ → if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
26 renegcl 11570 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
27 rexr 11305 . . 3 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
28 sgnval 15124 . . 3 (-𝐴 ∈ ℝ* → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
2926, 27, 283syl 18 . 2 (𝐴 ∈ ℝ → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
30 df-neg 11493 . . . 4 -(sgn‘𝐴) = (0 − (sgn‘𝐴))
3130a1i 11 . . 3 (𝐴 ∈ ℝ → -(sgn‘𝐴) = (0 − (sgn‘𝐴)))
32 rexr 11305 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
33 sgnval 15124 . . . . 5 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3432, 33syl 17 . . . 4 (𝐴 ∈ ℝ → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3534oveq2d 7447 . . 3 (𝐴 ∈ ℝ → (0 − (sgn‘𝐴)) = (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
36 ovif2 7532 . . . . 5 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1)))
37 biid 261 . . . . . 6 (𝐴 = 0 ↔ 𝐴 = 0)
38 0m0e0 12384 . . . . . 6 (0 − 0) = 0
39 ovif2 7532 . . . . . . 7 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, (0 − -1), (0 − 1))
40 biid 261 . . . . . . . 8 (𝐴 < 0 ↔ 𝐴 < 0)
41 0cn 11251 . . . . . . . . . 10 0 ∈ ℂ
42 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
4341, 42subnegi 11586 . . . . . . . . 9 (0 − -1) = (0 + 1)
44 0p1e1 12386 . . . . . . . . 9 (0 + 1) = 1
4543, 44eqtr2i 2764 . . . . . . . 8 1 = (0 − -1)
46 df-neg 11493 . . . . . . . 8 -1 = (0 − 1)
4740, 45, 46ifbieq12i 4558 . . . . . . 7 if(𝐴 < 0, 1, -1) = if(𝐴 < 0, (0 − -1), (0 − 1))
4839, 47eqtr4i 2766 . . . . . 6 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, 1, -1)
4937, 38, 48ifbieq12i 4558 . . . . 5 if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5036, 49eqtri 2763 . . . 4 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5150a1i 11 . . 3 (𝐴 ∈ ℝ → (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5231, 35, 513eqtrd 2779 . 2 (𝐴 ∈ ℝ → -(sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5325, 29, 523eqtr4d 2785 1 (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  ifcif 4531   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293  cmin 11490  -cneg 11491  sgncsgn 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-sgn 15123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator