Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnneg Structured version   Visualization version   GIF version

Theorem sgnneg 33539
Description: Negation of the signum. (Contributed by Thierry Arnoux, 1-Oct-2018.)
Assertion
Ref Expression
sgnneg (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))

Proof of Theorem sgnneg
StepHypRef Expression
1 recn 11200 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21negeq0d 11563 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ -𝐴 = 0))
32bicomd 222 . . 3 (𝐴 ∈ ℝ → (-𝐴 = 0 ↔ 𝐴 = 0))
4 eqidd 2734 . . 3 ((𝐴 ∈ ℝ ∧ -𝐴 = 0) → 0 = 0)
53necon3bbid 2979 . . . . 5 (𝐴 ∈ ℝ → (¬ -𝐴 = 0 ↔ 𝐴 ≠ 0))
65biimpa 478 . . . 4 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → 𝐴 ≠ 0)
7 lt0neg2 11721 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ -𝐴 < 0))
87adantr 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ -𝐴 < 0))
9 id 22 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
10 0red 11217 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 0 ∈ ℝ)
119, 10lttri2d 11353 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
1211biimpa 478 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
13 ltnsym2 11313 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1410, 13mpdan 686 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1514adantr 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ¬ (𝐴 < 0 ∧ 0 < 𝐴))
1612, 15jca 513 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)))
17 pm5.17 1011 . . . . . . . . 9 (((𝐴 < 0 ∨ 0 < 𝐴) ∧ ¬ (𝐴 < 0 ∧ 0 < 𝐴)) ↔ (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1816, 17sylib 217 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ↔ ¬ 0 < 𝐴))
1918con2bid 355 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 < 𝐴 ↔ ¬ 𝐴 < 0))
208, 19bitr3d 281 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (-𝐴 < 0 ↔ ¬ 𝐴 < 0))
2120ifbid 4552 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(¬ 𝐴 < 0, -1, 1))
22 ifnot 4581 . . . . 5 if(¬ 𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1)
2321, 22eqtrdi 2789 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
246, 23syldan 592 . . 3 ((𝐴 ∈ ℝ ∧ ¬ -𝐴 = 0) → if(-𝐴 < 0, -1, 1) = if(𝐴 < 0, 1, -1))
253, 4, 24ifbieq12d2 4563 . 2 (𝐴 ∈ ℝ → if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
26 renegcl 11523 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
27 rexr 11260 . . 3 (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*)
28 sgnval 15035 . . 3 (-𝐴 ∈ ℝ* → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
2926, 27, 283syl 18 . 2 (𝐴 ∈ ℝ → (sgn‘-𝐴) = if(-𝐴 = 0, 0, if(-𝐴 < 0, -1, 1)))
30 df-neg 11447 . . . 4 -(sgn‘𝐴) = (0 − (sgn‘𝐴))
3130a1i 11 . . 3 (𝐴 ∈ ℝ → -(sgn‘𝐴) = (0 − (sgn‘𝐴)))
32 rexr 11260 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
33 sgnval 15035 . . . . 5 (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3432, 33syl 17 . . . 4 (𝐴 ∈ ℝ → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1)))
3534oveq2d 7425 . . 3 (𝐴 ∈ ℝ → (0 − (sgn‘𝐴)) = (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))))
36 ovif2 7507 . . . . 5 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1)))
37 biid 261 . . . . . 6 (𝐴 = 0 ↔ 𝐴 = 0)
38 0m0e0 12332 . . . . . 6 (0 − 0) = 0
39 ovif2 7507 . . . . . . 7 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, (0 − -1), (0 − 1))
40 biid 261 . . . . . . . 8 (𝐴 < 0 ↔ 𝐴 < 0)
41 0cn 11206 . . . . . . . . . 10 0 ∈ ℂ
42 ax-1cn 11168 . . . . . . . . . 10 1 ∈ ℂ
4341, 42subnegi 11539 . . . . . . . . 9 (0 − -1) = (0 + 1)
44 0p1e1 12334 . . . . . . . . 9 (0 + 1) = 1
4543, 44eqtr2i 2762 . . . . . . . 8 1 = (0 − -1)
46 df-neg 11447 . . . . . . . 8 -1 = (0 − 1)
4740, 45, 46ifbieq12i 4556 . . . . . . 7 if(𝐴 < 0, 1, -1) = if(𝐴 < 0, (0 − -1), (0 − 1))
4839, 47eqtr4i 2764 . . . . . 6 (0 − if(𝐴 < 0, -1, 1)) = if(𝐴 < 0, 1, -1)
4937, 38, 48ifbieq12i 4556 . . . . 5 if(𝐴 = 0, (0 − 0), (0 − if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5036, 49eqtri 2761 . . . 4 (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1))
5150a1i 11 . . 3 (𝐴 ∈ ℝ → (0 − if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5231, 35, 513eqtrd 2777 . 2 (𝐴 ∈ ℝ → -(sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, 1, -1)))
5325, 29, 523eqtr4d 2783 1 (𝐴 ∈ ℝ → (sgn‘-𝐴) = -(sgn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  ifcif 4529   class class class wbr 5149  cfv 6544  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111   + caddc 11113  *cxr 11247   < clt 11248  cmin 11444  -cneg 11445  sgncsgn 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-sgn 15034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator