MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofccat Structured version   Visualization version   GIF version

Theorem ofccat 14324
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Hypotheses
Ref Expression
ofccat.1 (𝜑𝐸 ∈ Word 𝑆)
ofccat.2 (𝜑𝐹 ∈ Word 𝑆)
ofccat.3 (𝜑𝐺 ∈ Word 𝑇)
ofccat.4 (𝜑𝐻 ∈ Word 𝑇)
ofccat.5 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
ofccat.6 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
Assertion
Ref Expression
ofccat (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))

Proof of Theorem ofccat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ofccat.1 . . . . . . . . . . 11 (𝜑𝐸 ∈ Word 𝑆)
2 wrdf 13866 . . . . . . . . . . 11 (𝐸 ∈ Word 𝑆𝐸:(0..^(♯‘𝐸))⟶𝑆)
3 ffn 6491 . . . . . . . . . . 11 (𝐸:(0..^(♯‘𝐸))⟶𝑆𝐸 Fn (0..^(♯‘𝐸)))
41, 2, 33syl 18 . . . . . . . . . 10 (𝜑𝐸 Fn (0..^(♯‘𝐸)))
5 ofccat.3 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Word 𝑇)
6 wrdf 13866 . . . . . . . . . . . 12 (𝐺 ∈ Word 𝑇𝐺:(0..^(♯‘𝐺))⟶𝑇)
7 ffn 6491 . . . . . . . . . . . 12 (𝐺:(0..^(♯‘𝐺))⟶𝑇𝐺 Fn (0..^(♯‘𝐺)))
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝐺 Fn (0..^(♯‘𝐺)))
9 ofccat.5 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
109oveq2d 7155 . . . . . . . . . . . 12 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
1110fneq2d 6421 . . . . . . . . . . 11 (𝜑 → (𝐺 Fn (0..^(♯‘𝐸)) ↔ 𝐺 Fn (0..^(♯‘𝐺))))
128, 11mpbird 260 . . . . . . . . . 10 (𝜑𝐺 Fn (0..^(♯‘𝐸)))
13 ovexd 7174 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐸)) ∈ V)
14 inidm 4148 . . . . . . . . . 10 ((0..^(♯‘𝐸)) ∩ (0..^(♯‘𝐸))) = (0..^(♯‘𝐸))
154, 12, 13, 13, 14offn 7404 . . . . . . . . 9 (𝜑 → (𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)))
16 hashfn 13736 . . . . . . . . 9 ((𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
1715, 16syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
18 wrdfin 13879 . . . . . . . . . 10 (𝐸 ∈ Word 𝑆𝐸 ∈ Fin)
19 hashcl 13717 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐸) ∈ ℕ0)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐸) ∈ ℕ0)
21 hashfzo0 13791 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ0 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2220, 21syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2317, 22eqtrd 2836 . . . . . . 7 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2423adantr 484 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2524oveq2d 7155 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
2625eleq2d 2878 . . . 4 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))) ↔ 𝑖 ∈ (0..^(♯‘𝐸))))
274ad2antrr 725 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐸 Fn (0..^(♯‘𝐸)))
2812ad2antrr 725 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐺 Fn (0..^(♯‘𝐸)))
29 ovexd 7174 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐸)) ∈ V)
3026biimpa 480 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^(♯‘𝐸)))
31 fnfvof 7407 . . . . 5 (((𝐸 Fn (0..^(♯‘𝐸)) ∧ 𝐺 Fn (0..^(♯‘𝐸))) ∧ ((0..^(♯‘𝐸)) ∈ V ∧ 𝑖 ∈ (0..^(♯‘𝐸)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3227, 28, 29, 30, 31syl22anc 837 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3323ad2antrr 725 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
3433oveq2d 7155 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘(𝐸f 𝑅𝐺))) = (𝑖 − (♯‘𝐸)))
3534fveq2d 6653 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))))
36 ofccat.2 . . . . . . . 8 (𝜑𝐹 ∈ Word 𝑆)
37 wrdf 13866 . . . . . . . 8 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
38 ffn 6491 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶𝑆𝐹 Fn (0..^(♯‘𝐹)))
3936, 37, 383syl 18 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
4039ad2antrr 725 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐹 Fn (0..^(♯‘𝐹)))
41 ofccat.4 . . . . . . . . 9 (𝜑𝐻 ∈ Word 𝑇)
42 wrdf 13866 . . . . . . . . 9 (𝐻 ∈ Word 𝑇𝐻:(0..^(♯‘𝐻))⟶𝑇)
43 ffn 6491 . . . . . . . . 9 (𝐻:(0..^(♯‘𝐻))⟶𝑇𝐻 Fn (0..^(♯‘𝐻)))
4441, 42, 433syl 18 . . . . . . . 8 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
45 ofccat.6 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
4645oveq2d 7155 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) = (0..^(♯‘𝐻)))
4746fneq2d 6421 . . . . . . . 8 (𝜑 → (𝐻 Fn (0..^(♯‘𝐹)) ↔ 𝐻 Fn (0..^(♯‘𝐻))))
4844, 47mpbird 260 . . . . . . 7 (𝜑𝐻 Fn (0..^(♯‘𝐹)))
4948ad2antrr 725 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐻 Fn (0..^(♯‘𝐹)))
50 ovexd 7174 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐹)) ∈ V)
51 simplr 768 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))))
52 simpr 488 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))))
5325adantr 484 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
5452, 53neleqtrd 2914 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘𝐸)))
5520ad2antrr 725 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℕ0)
5655nn0zd 12077 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℤ)
57 wrdfin 13879 . . . . . . . . . 10 (𝐹 ∈ Word 𝑆𝐹 ∈ Fin)
58 hashcl 13717 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
5936, 57, 583syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
6059ad2antrr 725 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℕ0)
6160nn0zd 12077 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℤ)
62 fzocatel 13100 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐸))) ∧ ((♯‘𝐸) ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ)) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
6351, 54, 56, 61, 62syl22anc 837 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
64 fnfvof 7407 . . . . . 6 (((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝐻 Fn (0..^(♯‘𝐹))) ∧ ((0..^(♯‘𝐹)) ∈ V ∧ (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6540, 49, 50, 63, 64syl22anc 837 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6635, 65eqtrd 2836 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6726, 32, 66ifbieq12d2 4461 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
6867mpteq2dva 5128 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
69 ovex 7172 . . . 4 (𝐸f 𝑅𝐺) ∈ V
70 ovex 7172 . . . 4 (𝐹f 𝑅𝐻) ∈ V
71 ccatfval 13920 . . . 4 (((𝐸f 𝑅𝐺) ∈ V ∧ (𝐹f 𝑅𝐻) ∈ V) → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
7269, 70, 71mp2an 691 . . 3 ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))))
73 ovexd 7174 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
74 inidm 4148 . . . . . . . . 9 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
7539, 48, 73, 73, 74offn 7404 . . . . . . . 8 (𝜑 → (𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)))
76 hashfn 13736 . . . . . . . 8 ((𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)) → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
7775, 76syl 17 . . . . . . 7 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
78 hashfzo0 13791 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
7959, 78syl 17 . . . . . . 7 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8077, 79eqtrd 2836 . . . . . 6 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘𝐹))
8123, 80oveq12d 7157 . . . . 5 (𝜑 → ((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻))) = ((♯‘𝐸) + (♯‘𝐹)))
8281oveq2d 7155 . . . 4 (𝜑 → (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) = (0..^((♯‘𝐸) + (♯‘𝐹))))
8382mpteq1d 5122 . . 3 (𝜑 → (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
8472, 83syl5eq 2848 . 2 (𝜑 → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
85 ovexd 7174 . . . . 5 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) ∈ V)
86 fvex 6662 . . . . . . 7 (𝐸𝑖) ∈ V
87 fvex 6662 . . . . . . 7 (𝐹‘(𝑖 − (♯‘𝐸))) ∈ V
8886, 87ifex 4476 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V
8988a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V)
90 fvex 6662 . . . . . . 7 (𝐺𝑖) ∈ V
91 fvex 6662 . . . . . . 7 (𝐻‘(𝑖 − (♯‘𝐺))) ∈ V
9290, 91ifex 4476 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V
9392a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V)
94 ccatfval 13920 . . . . . 6 ((𝐸 ∈ Word 𝑆𝐹 ∈ Word 𝑆) → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
951, 36, 94syl2anc 587 . . . . 5 (𝜑 → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
96 ccatfval 13920 . . . . . . 7 ((𝐺 ∈ Word 𝑇𝐻 ∈ Word 𝑇) → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
975, 41, 96syl2anc 587 . . . . . 6 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
989, 45oveq12d 7157 . . . . . . . 8 (𝜑 → ((♯‘𝐸) + (♯‘𝐹)) = ((♯‘𝐺) + (♯‘𝐻)))
9998oveq2d 7155 . . . . . . 7 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) = (0..^((♯‘𝐺) + (♯‘𝐻))))
10099mpteq1d 5122 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10197, 100eqtr4d 2839 . . . . 5 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10285, 89, 93, 95, 101offval2 7410 . . . 4 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
1039adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘𝐸) = (♯‘𝐺))
104103oveq2d 7155 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
105104eleq2d 2878 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘𝐸)) ↔ 𝑖 ∈ (0..^(♯‘𝐺))))
106103oveq2d 7155 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 − (♯‘𝐸)) = (𝑖 − (♯‘𝐺)))
107106fveq2d 6653 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝐻‘(𝑖 − (♯‘𝐸))) = (𝐻‘(𝑖 − (♯‘𝐺))))
108105, 107ifbieq2d 4453 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))) = if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))
109108oveq2d 7155 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
110109mpteq2dva 5128 . . . 4 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
111102, 110eqtr4d 2839 . . 3 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))))
112 ovif12 7236 . . . 4 (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
113112mpteq2i 5125 . . 3 (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
114111, 113eqtrdi 2852 . 2 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
11568, 84, 1143eqtr4rd 2847 1 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  ifcif 4428  cmpt 5113   Fn wfn 6323  wf 6324  cfv 6328  (class class class)co 7139  f cof 7391  Fincfn 8496  0cc0 10530   + caddc 10533  cmin 10863  0cn0 11889  cz 11973  ..^cfzo 13032  chash 13690  Word cword 13861   ++ cconcat 13917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918
This theorem is referenced by:  ofs2  14326  ofcccat  31921  frlmvscadiccat  39427
  Copyright terms: Public domain W3C validator