MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofccat Structured version   Visualization version   GIF version

Theorem ofccat 14920
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Hypotheses
Ref Expression
ofccat.1 (𝜑𝐸 ∈ Word 𝑆)
ofccat.2 (𝜑𝐹 ∈ Word 𝑆)
ofccat.3 (𝜑𝐺 ∈ Word 𝑇)
ofccat.4 (𝜑𝐻 ∈ Word 𝑇)
ofccat.5 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
ofccat.6 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
Assertion
Ref Expression
ofccat (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))

Proof of Theorem ofccat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ofccat.1 . . . . . . . . . . 11 (𝜑𝐸 ∈ Word 𝑆)
2 wrdf 14473 . . . . . . . . . . 11 (𝐸 ∈ Word 𝑆𝐸:(0..^(♯‘𝐸))⟶𝑆)
3 ffn 6710 . . . . . . . . . . 11 (𝐸:(0..^(♯‘𝐸))⟶𝑆𝐸 Fn (0..^(♯‘𝐸)))
41, 2, 33syl 18 . . . . . . . . . 10 (𝜑𝐸 Fn (0..^(♯‘𝐸)))
5 ofccat.3 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Word 𝑇)
6 wrdf 14473 . . . . . . . . . . . 12 (𝐺 ∈ Word 𝑇𝐺:(0..^(♯‘𝐺))⟶𝑇)
7 ffn 6710 . . . . . . . . . . . 12 (𝐺:(0..^(♯‘𝐺))⟶𝑇𝐺 Fn (0..^(♯‘𝐺)))
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝐺 Fn (0..^(♯‘𝐺)))
9 ofccat.5 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
109oveq2d 7420 . . . . . . . . . . . 12 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
1110fneq2d 6636 . . . . . . . . . . 11 (𝜑 → (𝐺 Fn (0..^(♯‘𝐸)) ↔ 𝐺 Fn (0..^(♯‘𝐺))))
128, 11mpbird 257 . . . . . . . . . 10 (𝜑𝐺 Fn (0..^(♯‘𝐸)))
13 ovexd 7439 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐸)) ∈ V)
14 inidm 4213 . . . . . . . . . 10 ((0..^(♯‘𝐸)) ∩ (0..^(♯‘𝐸))) = (0..^(♯‘𝐸))
154, 12, 13, 13, 14offn 7679 . . . . . . . . 9 (𝜑 → (𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)))
16 hashfn 14338 . . . . . . . . 9 ((𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
1715, 16syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
18 wrdfin 14486 . . . . . . . . . 10 (𝐸 ∈ Word 𝑆𝐸 ∈ Fin)
19 hashcl 14319 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐸) ∈ ℕ0)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐸) ∈ ℕ0)
21 hashfzo0 14393 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ0 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2220, 21syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2317, 22eqtrd 2766 . . . . . . 7 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2423adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2524oveq2d 7420 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
2625eleq2d 2813 . . . 4 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))) ↔ 𝑖 ∈ (0..^(♯‘𝐸))))
274ad2antrr 723 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐸 Fn (0..^(♯‘𝐸)))
2812ad2antrr 723 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐺 Fn (0..^(♯‘𝐸)))
29 ovexd 7439 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐸)) ∈ V)
3026biimpa 476 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^(♯‘𝐸)))
31 fnfvof 7683 . . . . 5 (((𝐸 Fn (0..^(♯‘𝐸)) ∧ 𝐺 Fn (0..^(♯‘𝐸))) ∧ ((0..^(♯‘𝐸)) ∈ V ∧ 𝑖 ∈ (0..^(♯‘𝐸)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3227, 28, 29, 30, 31syl22anc 836 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3323ad2antrr 723 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
3433oveq2d 7420 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘(𝐸f 𝑅𝐺))) = (𝑖 − (♯‘𝐸)))
3534fveq2d 6888 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))))
36 ofccat.2 . . . . . . . 8 (𝜑𝐹 ∈ Word 𝑆)
37 wrdf 14473 . . . . . . . 8 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
38 ffn 6710 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶𝑆𝐹 Fn (0..^(♯‘𝐹)))
3936, 37, 383syl 18 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
4039ad2antrr 723 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐹 Fn (0..^(♯‘𝐹)))
41 ofccat.4 . . . . . . . . 9 (𝜑𝐻 ∈ Word 𝑇)
42 wrdf 14473 . . . . . . . . 9 (𝐻 ∈ Word 𝑇𝐻:(0..^(♯‘𝐻))⟶𝑇)
43 ffn 6710 . . . . . . . . 9 (𝐻:(0..^(♯‘𝐻))⟶𝑇𝐻 Fn (0..^(♯‘𝐻)))
4441, 42, 433syl 18 . . . . . . . 8 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
45 ofccat.6 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
4645oveq2d 7420 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) = (0..^(♯‘𝐻)))
4746fneq2d 6636 . . . . . . . 8 (𝜑 → (𝐻 Fn (0..^(♯‘𝐹)) ↔ 𝐻 Fn (0..^(♯‘𝐻))))
4844, 47mpbird 257 . . . . . . 7 (𝜑𝐻 Fn (0..^(♯‘𝐹)))
4948ad2antrr 723 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐻 Fn (0..^(♯‘𝐹)))
50 ovexd 7439 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐹)) ∈ V)
51 simplr 766 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))))
52 simpr 484 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))))
5325adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
5452, 53neleqtrd 2849 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘𝐸)))
5520ad2antrr 723 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℕ0)
5655nn0zd 12585 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℤ)
57 wrdfin 14486 . . . . . . . . . 10 (𝐹 ∈ Word 𝑆𝐹 ∈ Fin)
58 hashcl 14319 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
5936, 57, 583syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
6059ad2antrr 723 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℕ0)
6160nn0zd 12585 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℤ)
62 fzocatel 13699 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐸))) ∧ ((♯‘𝐸) ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ)) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
6351, 54, 56, 61, 62syl22anc 836 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
64 fnfvof 7683 . . . . . 6 (((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝐻 Fn (0..^(♯‘𝐹))) ∧ ((0..^(♯‘𝐹)) ∈ V ∧ (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6540, 49, 50, 63, 64syl22anc 836 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6635, 65eqtrd 2766 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6726, 32, 66ifbieq12d2 4557 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
6867mpteq2dva 5241 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
69 ovex 7437 . . . 4 (𝐸f 𝑅𝐺) ∈ V
70 ovex 7437 . . . 4 (𝐹f 𝑅𝐻) ∈ V
71 ccatfval 14527 . . . 4 (((𝐸f 𝑅𝐺) ∈ V ∧ (𝐹f 𝑅𝐻) ∈ V) → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
7269, 70, 71mp2an 689 . . 3 ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))))
73 ovexd 7439 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
74 inidm 4213 . . . . . . . . 9 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
7539, 48, 73, 73, 74offn 7679 . . . . . . . 8 (𝜑 → (𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)))
76 hashfn 14338 . . . . . . . 8 ((𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)) → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
7775, 76syl 17 . . . . . . 7 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
78 hashfzo0 14393 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
7959, 78syl 17 . . . . . . 7 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8077, 79eqtrd 2766 . . . . . 6 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘𝐹))
8123, 80oveq12d 7422 . . . . 5 (𝜑 → ((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻))) = ((♯‘𝐸) + (♯‘𝐹)))
8281oveq2d 7420 . . . 4 (𝜑 → (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) = (0..^((♯‘𝐸) + (♯‘𝐹))))
8382mpteq1d 5236 . . 3 (𝜑 → (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
8472, 83eqtrid 2778 . 2 (𝜑 → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
85 ovexd 7439 . . . . 5 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) ∈ V)
86 fvex 6897 . . . . . . 7 (𝐸𝑖) ∈ V
87 fvex 6897 . . . . . . 7 (𝐹‘(𝑖 − (♯‘𝐸))) ∈ V
8886, 87ifex 4573 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V
8988a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V)
90 fvex 6897 . . . . . . 7 (𝐺𝑖) ∈ V
91 fvex 6897 . . . . . . 7 (𝐻‘(𝑖 − (♯‘𝐺))) ∈ V
9290, 91ifex 4573 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V
9392a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V)
94 ccatfval 14527 . . . . . 6 ((𝐸 ∈ Word 𝑆𝐹 ∈ Word 𝑆) → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
951, 36, 94syl2anc 583 . . . . 5 (𝜑 → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
96 ccatfval 14527 . . . . . . 7 ((𝐺 ∈ Word 𝑇𝐻 ∈ Word 𝑇) → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
975, 41, 96syl2anc 583 . . . . . 6 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
989, 45oveq12d 7422 . . . . . . . 8 (𝜑 → ((♯‘𝐸) + (♯‘𝐹)) = ((♯‘𝐺) + (♯‘𝐻)))
9998oveq2d 7420 . . . . . . 7 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) = (0..^((♯‘𝐺) + (♯‘𝐻))))
10099mpteq1d 5236 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10197, 100eqtr4d 2769 . . . . 5 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10285, 89, 93, 95, 101offval2 7686 . . . 4 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
1039adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘𝐸) = (♯‘𝐺))
104103oveq2d 7420 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
105104eleq2d 2813 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘𝐸)) ↔ 𝑖 ∈ (0..^(♯‘𝐺))))
106103oveq2d 7420 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 − (♯‘𝐸)) = (𝑖 − (♯‘𝐺)))
107106fveq2d 6888 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝐻‘(𝑖 − (♯‘𝐸))) = (𝐻‘(𝑖 − (♯‘𝐺))))
108105, 107ifbieq2d 4549 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))) = if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))
109108oveq2d 7420 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
110109mpteq2dva 5241 . . . 4 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
111102, 110eqtr4d 2769 . . 3 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))))
112 ovif12 7503 . . . 4 (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
113112mpteq2i 5246 . . 3 (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
114111, 113eqtrdi 2782 . 2 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
11568, 84, 1143eqtr4rd 2777 1 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  ifcif 4523  cmpt 5224   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7404  f cof 7664  Fincfn 8938  0cc0 11109   + caddc 11112  cmin 11445  0cn0 12473  cz 12559  ..^cfzo 13630  chash 14293  Word cword 14468   ++ cconcat 14524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14294  df-word 14469  df-concat 14525
This theorem is referenced by:  ofs2  14922  ofcccat  34084  frlmvscadiccat  41622
  Copyright terms: Public domain W3C validator