MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofccat Structured version   Visualization version   GIF version

Theorem ofccat 14912
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Hypotheses
Ref Expression
ofccat.1 (𝜑𝐸 ∈ Word 𝑆)
ofccat.2 (𝜑𝐹 ∈ Word 𝑆)
ofccat.3 (𝜑𝐺 ∈ Word 𝑇)
ofccat.4 (𝜑𝐻 ∈ Word 𝑇)
ofccat.5 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
ofccat.6 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
Assertion
Ref Expression
ofccat (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))

Proof of Theorem ofccat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ofccat.1 . . . . . . . . . . 11 (𝜑𝐸 ∈ Word 𝑆)
2 wrdf 14465 . . . . . . . . . . 11 (𝐸 ∈ Word 𝑆𝐸:(0..^(♯‘𝐸))⟶𝑆)
3 ffn 6714 . . . . . . . . . . 11 (𝐸:(0..^(♯‘𝐸))⟶𝑆𝐸 Fn (0..^(♯‘𝐸)))
41, 2, 33syl 18 . . . . . . . . . 10 (𝜑𝐸 Fn (0..^(♯‘𝐸)))
5 ofccat.3 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Word 𝑇)
6 wrdf 14465 . . . . . . . . . . . 12 (𝐺 ∈ Word 𝑇𝐺:(0..^(♯‘𝐺))⟶𝑇)
7 ffn 6714 . . . . . . . . . . . 12 (𝐺:(0..^(♯‘𝐺))⟶𝑇𝐺 Fn (0..^(♯‘𝐺)))
85, 6, 73syl 18 . . . . . . . . . . 11 (𝜑𝐺 Fn (0..^(♯‘𝐺)))
9 ofccat.5 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐸) = (♯‘𝐺))
109oveq2d 7421 . . . . . . . . . . . 12 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
1110fneq2d 6640 . . . . . . . . . . 11 (𝜑 → (𝐺 Fn (0..^(♯‘𝐸)) ↔ 𝐺 Fn (0..^(♯‘𝐺))))
128, 11mpbird 256 . . . . . . . . . 10 (𝜑𝐺 Fn (0..^(♯‘𝐸)))
13 ovexd 7440 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝐸)) ∈ V)
14 inidm 4217 . . . . . . . . . 10 ((0..^(♯‘𝐸)) ∩ (0..^(♯‘𝐸))) = (0..^(♯‘𝐸))
154, 12, 13, 13, 14offn 7679 . . . . . . . . 9 (𝜑 → (𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)))
16 hashfn 14331 . . . . . . . . 9 ((𝐸f 𝑅𝐺) Fn (0..^(♯‘𝐸)) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
1715, 16syl 17 . . . . . . . 8 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘(0..^(♯‘𝐸))))
18 wrdfin 14478 . . . . . . . . . 10 (𝐸 ∈ Word 𝑆𝐸 ∈ Fin)
19 hashcl 14312 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐸) ∈ ℕ0)
201, 18, 193syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐸) ∈ ℕ0)
21 hashfzo0 14386 . . . . . . . . 9 ((♯‘𝐸) ∈ ℕ0 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2220, 21syl 17 . . . . . . . 8 (𝜑 → (♯‘(0..^(♯‘𝐸))) = (♯‘𝐸))
2317, 22eqtrd 2772 . . . . . . 7 (𝜑 → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2423adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
2524oveq2d 7421 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
2625eleq2d 2819 . . . 4 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))) ↔ 𝑖 ∈ (0..^(♯‘𝐸))))
274ad2antrr 724 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐸 Fn (0..^(♯‘𝐸)))
2812ad2antrr 724 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐺 Fn (0..^(♯‘𝐸)))
29 ovexd 7440 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐸)) ∈ V)
3026biimpa 477 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^(♯‘𝐸)))
31 fnfvof 7683 . . . . 5 (((𝐸 Fn (0..^(♯‘𝐸)) ∧ 𝐺 Fn (0..^(♯‘𝐸))) ∧ ((0..^(♯‘𝐸)) ∈ V ∧ 𝑖 ∈ (0..^(♯‘𝐸)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3227, 28, 29, 30, 31syl22anc 837 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐸f 𝑅𝐺)‘𝑖) = ((𝐸𝑖)𝑅(𝐺𝑖)))
3323ad2antrr 724 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘(𝐸f 𝑅𝐺)) = (♯‘𝐸))
3433oveq2d 7421 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘(𝐸f 𝑅𝐺))) = (𝑖 − (♯‘𝐸)))
3534fveq2d 6892 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))))
36 ofccat.2 . . . . . . . 8 (𝜑𝐹 ∈ Word 𝑆)
37 wrdf 14465 . . . . . . . 8 (𝐹 ∈ Word 𝑆𝐹:(0..^(♯‘𝐹))⟶𝑆)
38 ffn 6714 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))⟶𝑆𝐹 Fn (0..^(♯‘𝐹)))
3936, 37, 383syl 18 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
4039ad2antrr 724 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐹 Fn (0..^(♯‘𝐹)))
41 ofccat.4 . . . . . . . . 9 (𝜑𝐻 ∈ Word 𝑇)
42 wrdf 14465 . . . . . . . . 9 (𝐻 ∈ Word 𝑇𝐻:(0..^(♯‘𝐻))⟶𝑇)
43 ffn 6714 . . . . . . . . 9 (𝐻:(0..^(♯‘𝐻))⟶𝑇𝐻 Fn (0..^(♯‘𝐻)))
4441, 42, 433syl 18 . . . . . . . 8 (𝜑𝐻 Fn (0..^(♯‘𝐻)))
45 ofccat.6 . . . . . . . . . 10 (𝜑 → (♯‘𝐹) = (♯‘𝐻))
4645oveq2d 7421 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) = (0..^(♯‘𝐻)))
4746fneq2d 6640 . . . . . . . 8 (𝜑 → (𝐻 Fn (0..^(♯‘𝐹)) ↔ 𝐻 Fn (0..^(♯‘𝐻))))
4844, 47mpbird 256 . . . . . . 7 (𝜑𝐻 Fn (0..^(♯‘𝐹)))
4948ad2antrr 724 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝐻 Fn (0..^(♯‘𝐹)))
50 ovexd 7440 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘𝐹)) ∈ V)
51 simplr 767 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → 𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))))
52 simpr 485 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))))
5325adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (0..^(♯‘(𝐸f 𝑅𝐺))) = (0..^(♯‘𝐸)))
5452, 53neleqtrd 2855 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ¬ 𝑖 ∈ (0..^(♯‘𝐸)))
5520ad2antrr 724 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℕ0)
5655nn0zd 12580 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐸) ∈ ℤ)
57 wrdfin 14478 . . . . . . . . . 10 (𝐹 ∈ Word 𝑆𝐹 ∈ Fin)
58 hashcl 14312 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
5936, 57, 583syl 18 . . . . . . . . 9 (𝜑 → (♯‘𝐹) ∈ ℕ0)
6059ad2antrr 724 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℕ0)
6160nn0zd 12580 . . . . . . 7 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (♯‘𝐹) ∈ ℤ)
62 fzocatel 13692 . . . . . . 7 (((𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ∧ ¬ 𝑖 ∈ (0..^(♯‘𝐸))) ∧ ((♯‘𝐸) ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ)) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
6351, 54, 56, 61, 62syl22anc 837 . . . . . 6 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))
64 fnfvof 7683 . . . . . 6 (((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝐻 Fn (0..^(♯‘𝐹))) ∧ ((0..^(♯‘𝐹)) ∈ V ∧ (𝑖 − (♯‘𝐸)) ∈ (0..^(♯‘𝐹)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6540, 49, 50, 63, 64syl22anc 837 . . . . 5 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘𝐸))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6635, 65eqtrd 2772 . . . 4 (((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) ∧ ¬ 𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺)))) → ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))) = ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
6726, 32, 66ifbieq12d2 4561 . . 3 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
6867mpteq2dva 5247 . 2 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
69 ovex 7438 . . . 4 (𝐸f 𝑅𝐺) ∈ V
70 ovex 7438 . . . 4 (𝐹f 𝑅𝐻) ∈ V
71 ccatfval 14519 . . . 4 (((𝐸f 𝑅𝐺) ∈ V ∧ (𝐹f 𝑅𝐻) ∈ V) → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
7269, 70, 71mp2an 690 . . 3 ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺))))))
73 ovexd 7440 . . . . . . . . 9 (𝜑 → (0..^(♯‘𝐹)) ∈ V)
74 inidm 4217 . . . . . . . . 9 ((0..^(♯‘𝐹)) ∩ (0..^(♯‘𝐹))) = (0..^(♯‘𝐹))
7539, 48, 73, 73, 74offn 7679 . . . . . . . 8 (𝜑 → (𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)))
76 hashfn 14331 . . . . . . . 8 ((𝐹f 𝑅𝐻) Fn (0..^(♯‘𝐹)) → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
7775, 76syl 17 . . . . . . 7 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘(0..^(♯‘𝐹))))
78 hashfzo0 14386 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
7959, 78syl 17 . . . . . . 7 (𝜑 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹))
8077, 79eqtrd 2772 . . . . . 6 (𝜑 → (♯‘(𝐹f 𝑅𝐻)) = (♯‘𝐹))
8123, 80oveq12d 7423 . . . . 5 (𝜑 → ((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻))) = ((♯‘𝐸) + (♯‘𝐹)))
8281oveq2d 7421 . . . 4 (𝜑 → (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) = (0..^((♯‘𝐸) + (♯‘𝐹))))
8382mpteq1d 5242 . . 3 (𝜑 → (𝑖 ∈ (0..^((♯‘(𝐸f 𝑅𝐺)) + (♯‘(𝐹f 𝑅𝐻)))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
8472, 83eqtrid 2784 . 2 (𝜑 → ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘(𝐸f 𝑅𝐺))), ((𝐸f 𝑅𝐺)‘𝑖), ((𝐹f 𝑅𝐻)‘(𝑖 − (♯‘(𝐸f 𝑅𝐺)))))))
85 ovexd 7440 . . . . 5 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) ∈ V)
86 fvex 6901 . . . . . . 7 (𝐸𝑖) ∈ V
87 fvex 6901 . . . . . . 7 (𝐹‘(𝑖 − (♯‘𝐸))) ∈ V
8886, 87ifex 4577 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V
8988a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸)))) ∈ V)
90 fvex 6901 . . . . . . 7 (𝐺𝑖) ∈ V
91 fvex 6901 . . . . . . 7 (𝐻‘(𝑖 − (♯‘𝐺))) ∈ V
9290, 91ifex 4577 . . . . . 6 if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V
9392a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))) ∈ V)
94 ccatfval 14519 . . . . . 6 ((𝐸 ∈ Word 𝑆𝐹 ∈ Word 𝑆) → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
951, 36, 94syl2anc 584 . . . . 5 (𝜑 → (𝐸 ++ 𝐹) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))))
96 ccatfval 14519 . . . . . . 7 ((𝐺 ∈ Word 𝑇𝐻 ∈ Word 𝑇) → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
975, 41, 96syl2anc 584 . . . . . 6 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
989, 45oveq12d 7423 . . . . . . . 8 (𝜑 → ((♯‘𝐸) + (♯‘𝐹)) = ((♯‘𝐺) + (♯‘𝐻)))
9998oveq2d 7421 . . . . . . 7 (𝜑 → (0..^((♯‘𝐸) + (♯‘𝐹))) = (0..^((♯‘𝐺) + (♯‘𝐻))))
10099mpteq1d 5242 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))) = (𝑖 ∈ (0..^((♯‘𝐺) + (♯‘𝐻))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10197, 100eqtr4d 2775 . . . . 5 (𝜑 → (𝐺 ++ 𝐻) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
10285, 89, 93, 95, 101offval2 7686 . . . 4 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
1039adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (♯‘𝐸) = (♯‘𝐺))
104103oveq2d 7421 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (0..^(♯‘𝐸)) = (0..^(♯‘𝐺)))
105104eleq2d 2819 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 ∈ (0..^(♯‘𝐸)) ↔ 𝑖 ∈ (0..^(♯‘𝐺))))
106103oveq2d 7421 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝑖 − (♯‘𝐸)) = (𝑖 − (♯‘𝐺)))
107106fveq2d 6892 . . . . . . 7 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (𝐻‘(𝑖 − (♯‘𝐸))) = (𝐻‘(𝑖 − (♯‘𝐺))))
108105, 107ifbieq2d 4553 . . . . . 6 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))) = if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))
109108oveq2d 7421 . . . . 5 ((𝜑𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹)))) → (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺))))))
110109mpteq2dva 5247 . . . 4 (𝜑 → (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐺)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐺)))))))
111102, 110eqtr4d 2775 . . 3 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))))
112 ovif12 7504 . . . 4 (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸))))) = if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))
113112mpteq2i 5252 . . 3 (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ (if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐸𝑖), (𝐹‘(𝑖 − (♯‘𝐸))))𝑅if(𝑖 ∈ (0..^(♯‘𝐸)), (𝐺𝑖), (𝐻‘(𝑖 − (♯‘𝐸)))))) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸))))))
114111, 113eqtrdi 2788 . 2 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = (𝑖 ∈ (0..^((♯‘𝐸) + (♯‘𝐹))) ↦ if(𝑖 ∈ (0..^(♯‘𝐸)), ((𝐸𝑖)𝑅(𝐺𝑖)), ((𝐹‘(𝑖 − (♯‘𝐸)))𝑅(𝐻‘(𝑖 − (♯‘𝐸)))))))
11568, 84, 1143eqtr4rd 2783 1 (𝜑 → ((𝐸 ++ 𝐹) ∘f 𝑅(𝐺 ++ 𝐻)) = ((𝐸f 𝑅𝐺) ++ (𝐹f 𝑅𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  ifcif 4527  cmpt 5230   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  f cof 7664  Fincfn 8935  0cc0 11106   + caddc 11109  cmin 11440  0cn0 12468  cz 12554  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517
This theorem is referenced by:  ofs2  14914  ofcccat  33542  frlmvscadiccat  41077
  Copyright terms: Public domain W3C validator