Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq12dv Structured version   Visualization version   GIF version

Theorem itgeq12dv 32293
Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Hypotheses
Ref Expression
itgeq12dv.2 (𝜑𝐴 = 𝐵)
itgeq12dv.1 ((𝜑𝑥𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
itgeq12dv (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgeq12dv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgeq12dv.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 = 𝐷)
21fvoveq1d 7297 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
32breq2d 5086 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))
43pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘))))))
5 itgeq12dv.2 . . . . . . . . . 10 (𝜑𝐴 = 𝐵)
65eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝐵))
76anbi1d 630 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))) ↔ (𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘))))))
84, 7bitrd 278 . . . . . . 7 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘))))))
92adantrr 714 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
10 eqidd 2739 . . . . . . 7 ((𝜑 ∧ ¬ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → 0 = 0)
118, 9, 10ifbieq12d2 4493 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
1211mpteq2dv 5176 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
1312fveq2d 6778 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
1413oveq2d 7291 . . 3 (𝜑 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
1514sumeq2sdv 15416 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
16 eqid 2738 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
1716dfitg 24934 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
18 eqid 2738 . . 3 (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))
1918dfitg 24934 . 2 𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
2015, 17, 193eqtr4g 2803 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  ici 10873   · cmul 10876  cle 11010   / cdiv 11632  3c3 12029  ...cfz 13239  cexp 13782  cre 14808  Σcsu 15397  2citg2 24780  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sum 15398  df-itg 24787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator