![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq12dv | Structured version Visualization version GIF version |
Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
itgeq12dv.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
itgeq12dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
itgeq12dv | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq12dv.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) | |
2 | 1 | fvoveq1d 7379 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))) |
3 | 2 | breq2d 5117 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘))))) |
4 | 3 | pm5.32da 579 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
5 | itgeq12dv.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 = 𝐵) | |
6 | 5 | eleq2d 2823 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 6 | anbi1d 630 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
8 | 4, 7 | bitrd 278 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
9 | 2 | adantrr 715 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))) |
10 | eqidd 2737 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → 0 = 0) | |
11 | 8, 9, 10 | ifbieq12d2 4520 | . . . . . 6 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) |
12 | 11 | mpteq2dv 5207 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) |
13 | 12 | fveq2d 6846 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))) |
14 | 13 | oveq2d 7373 | . . 3 ⊢ (𝜑 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))) |
15 | 14 | sumeq2sdv 15589 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))) |
16 | eqid 2736 | . . 3 ⊢ (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))) | |
17 | 16 | dfitg 25134 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
18 | eqid 2736 | . . 3 ⊢ (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))) | |
19 | 18 | dfitg 25134 | . 2 ⊢ ∫𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))) |
20 | 15, 17, 19 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4486 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 0cc0 11051 ici 11053 · cmul 11056 ≤ cle 11190 / cdiv 11812 3c3 12209 ...cfz 13424 ↑cexp 13967 ℜcre 14982 Σcsu 15570 ∫2citg2 24980 ∫citg 24982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-seq 13907 df-sum 15571 df-itg 24987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |