Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgeq12dv Structured version   Visualization version   GIF version

Theorem itgeq12dv 33325
Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Hypotheses
Ref Expression
itgeq12dv.2 (๐œ‘ โ†’ ๐ด = ๐ต)
itgeq12dv.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ = ๐ท)
Assertion
Ref Expression
itgeq12dv (๐œ‘ โ†’ โˆซ๐ด๐ถ d๐‘ฅ = โˆซ๐ต๐ท d๐‘ฅ)
Distinct variable group:   ๐œ‘,๐‘ฅ
Allowed substitution hints:   ๐ด(๐‘ฅ)   ๐ต(๐‘ฅ)   ๐ถ(๐‘ฅ)   ๐ท(๐‘ฅ)

Proof of Theorem itgeq12dv
Dummy variable ๐‘˜ is distinct from all other variables.
StepHypRef Expression
1 itgeq12dv.1 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ถ = ๐ท)
21fvoveq1d 7431 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))
32breq2d 5161 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) โ†” 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))))
43pm5.32da 580 . . . . . . . 8 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))) โ†” (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))))
5 itgeq12dv.2 . . . . . . . . . 10 (๐œ‘ โ†’ ๐ด = ๐ต)
65eleq2d 2820 . . . . . . . . 9 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†” ๐‘ฅ โˆˆ ๐ต))
76anbi1d 631 . . . . . . . 8 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))) โ†” (๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))))
84, 7bitrd 279 . . . . . . 7 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))) โ†” (๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))))
92adantrr 716 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))))) โ†’ (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))
10 eqidd 2734 . . . . . . 7 ((๐œ‘ โˆง ยฌ (๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))))) โ†’ 0 = 0)
118, 9, 10ifbieq12d2 4563 . . . . . 6 (๐œ‘ โ†’ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
1211mpteq2dv 5251 . . . . 5 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))
1312fveq2d 6896 . . . 4 (๐œ‘ โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) = (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))))
1413oveq2d 7425 . . 3 (๐œ‘ โ†’ ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))) = ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))))
1514sumeq2sdv 15650 . 2 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))) = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))))
16 eqid 2733 . . 3 (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))
1716dfitg 25287 . 2 โˆซ๐ด๐ถ d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))))
18 eqid 2733 . . 3 (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))
1918dfitg 25287 . 2 โˆซ๐ต๐ท d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))))
2015, 17, 193eqtr4g 2798 1 (๐œ‘ โ†’ โˆซ๐ด๐ถ d๐‘ฅ = โˆซ๐ต๐ท d๐‘ฅ)
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  ifcif 4529   class class class wbr 5149   โ†ฆ cmpt 5232  โ€˜cfv 6544  (class class class)co 7409  โ„cr 11109  0cc0 11110  ici 11112   ยท cmul 11115   โ‰ค cle 11249   / cdiv 11871  3c3 12268  ...cfz 13484  โ†‘cexp 14027  โ„œcre 15044  ฮฃcsu 15632  โˆซ2citg2 25133  โˆซcitg 25135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-seq 13967  df-sum 15633  df-itg 25140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator