![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itgeq12dv | Structured version Visualization version GIF version |
Description: Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
itgeq12dv.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
itgeq12dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
itgeq12dv | ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq12dv.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = 𝐷) | |
2 | 1 | fvoveq1d 7434 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))) |
3 | 2 | breq2d 5160 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘))))) |
4 | 3 | pm5.32da 578 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
5 | itgeq12dv.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 = 𝐵) | |
6 | 5 | eleq2d 2818 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 6 | anbi1d 629 | . . . . . . . 8 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
8 | 4, 7 | bitrd 279 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))))) |
9 | 2 | adantrr 714 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))) |
10 | eqidd 2732 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))) → 0 = 0) | |
11 | 8, 9, 10 | ifbieq12d2 4562 | . . . . . 6 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) |
12 | 11 | mpteq2dv 5250 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) |
13 | 12 | fveq2d 6895 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))) |
14 | 13 | oveq2d 7428 | . . 3 ⊢ (𝜑 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))) |
15 | 14 | sumeq2sdv 15657 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))) |
16 | eqid 2731 | . . 3 ⊢ (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))) | |
17 | 16 | dfitg 25619 | . 2 ⊢ ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
18 | eqid 2731 | . . 3 ⊢ (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))) | |
19 | 18 | dfitg 25619 | . 2 ⊢ ∫𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))) |
20 | 15, 17, 19 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ifcif 4528 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 0cc0 11116 ici 11118 · cmul 11121 ≤ cle 11256 / cdiv 11878 3c3 12275 ...cfz 13491 ↑cexp 14034 ℜcre 15051 Σcsu 15639 ∫2citg2 25465 ∫citg 25467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-seq 13974 df-sum 15640 df-itg 25472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |