MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq12da Structured version   Visualization version   GIF version

Theorem ifeq12da 4581
Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021.)
Hypotheses
Ref Expression
ifeq12da.1 ((𝜑𝜓) → 𝐴 = 𝐶)
ifeq12da.2 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷)
Assertion
Ref Expression
ifeq12da (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))

Proof of Theorem ifeq12da
StepHypRef Expression
1 ifeq12da.1 . . . 4 ((𝜑𝜓) → 𝐴 = 𝐶)
21ifeq1da 4579 . . 3 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐵))
3 iftrue 4554 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶)
4 iftrue 4554 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐶)
53, 4eqtr4d 2783 . . 3 (𝜓 → if(𝜓, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷))
62, 5sylan9eq 2800 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
7 ifeq12da.2 . . . 4 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷)
87ifeq2da 4580 . . 3 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐷))
9 iffalse 4557 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐷) = 𝐷)
10 iffalse 4557 . . . 4 𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐷)
119, 10eqtr4d 2783 . . 3 𝜓 → if(𝜓, 𝐴, 𝐷) = if(𝜓, 𝐶, 𝐷))
128, 11sylan9eq 2800 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
136, 12pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-un 3981  df-if 4549
This theorem is referenced by:  ifbieq12d2  4582  copco  25070  pcohtpylem  25071  rpvmasum2  27574  prjspnfv01  42579
  Copyright terms: Public domain W3C validator