Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq12da | Structured version Visualization version GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021.) |
Ref | Expression |
---|---|
ifeq12da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
ifeq12da.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ifeq12da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq12da.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
2 | 1 | ifeq1da 4490 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐵)) |
3 | iftrue 4465 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
4 | iftrue 4465 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐶) | |
5 | 3, 4 | eqtr4d 2781 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
6 | 2, 5 | sylan9eq 2798 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
7 | ifeq12da.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) | |
8 | 7 | ifeq2da 4491 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐷)) |
9 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐷) = 𝐷) | |
10 | iffalse 4468 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐷) | |
11 | 9, 10 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐷) = if(𝜓, 𝐶, 𝐷)) |
12 | 8, 11 | sylan9eq 2798 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
13 | 6, 12 | pm2.61dan 810 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ifbieq12d2 4493 copco 24181 pcohtpylem 24182 rpvmasum2 26660 prjspnfv01 40461 |
Copyright terms: Public domain | W3C validator |