| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12da | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021.) |
| Ref | Expression |
|---|---|
| ifeq12da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| ifeq12da.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ifeq12da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq12da.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) | |
| 2 | 1 | ifeq1da 4537 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐵)) |
| 3 | iftrue 4511 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶) | |
| 4 | iftrue 4511 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐶) | |
| 5 | 3, 4 | eqtr4d 2774 | . . 3 ⊢ (𝜓 → if(𝜓, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| 6 | 2, 5 | sylan9eq 2791 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| 7 | ifeq12da.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷) | |
| 8 | 7 | ifeq2da 4538 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐷)) |
| 9 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐷) = 𝐷) | |
| 10 | iffalse 4514 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐷) | |
| 11 | 9, 10 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐷) = if(𝜓, 𝐶, 𝐷)) |
| 12 | 8, 11 | sylan9eq 2791 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| 13 | 6, 12 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-if 4506 |
| This theorem is referenced by: ifbieq12d2 4540 psdmvr 22112 copco 24974 pcohtpylem 24975 rpvmasum2 27480 prjspnfv01 42622 |
| Copyright terms: Public domain | W3C validator |