Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv1fvfmla1 Structured version   Visualization version   GIF version

Theorem satfv1fvfmla1 34969
Description: The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
satfv1fvfmla1 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
Distinct variable groups:   𝐸,𝑎   𝐼,𝑎   𝐽,𝑎   𝐾,𝑎   𝐿,𝑎   𝑀,𝑎
Allowed substitution hints:   𝑉(𝑎)   𝑊(𝑎)   𝑋(𝑎)

Proof of Theorem satfv1fvfmla1
Dummy variables 𝑖 𝑗 𝑘 𝑛 𝑥 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑀𝑉𝐸𝑊) → 𝑀𝑉)
2 simpr 484 . . . . 5 ((𝑀𝑉𝐸𝑊) → 𝐸𝑊)
3 1onn 8654 . . . . . 6 1o ∈ ω
43a1i 11 . . . . 5 ((𝑀𝑉𝐸𝑊) → 1o ∈ ω)
51, 2, 43jca 1126 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω))
653ad2ant1 1131 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω))
7 satffun 34955 . . 3 ((𝑀𝑉𝐸𝑊 ∧ 1o ∈ ω) → Fun ((𝑀 Sat 𝐸)‘1o))
86, 7syl 17 . 2 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat 𝐸)‘1o))
9 simp2l 1197 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω)
10 simp2r 1198 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω)
11 simp3l 1199 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω)
12 simp3r 1200 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω)
13 satfv1fvfmla1.x . . . . . . . . . . 11 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
14 eqid 2727 . . . . . . . . . . 11 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}
1513, 14pm3.2i 470 . . . . . . . . . 10 (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
1615a1i 11 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
17 oveq1 7421 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝑘𝑔𝑙) = (𝐾𝑔𝑙))
1817oveq2d 7430 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)))
1918eqeq2d 2738 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙))))
20 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐾 → (𝑎𝑘) = (𝑎𝐾))
2120breq1d 5152 . . . . . . . . . . . . . . 15 (𝑘 = 𝐾 → ((𝑎𝑘)𝐸(𝑎𝑙) ↔ (𝑎𝐾)𝐸(𝑎𝑙)))
2221notbid 318 . . . . . . . . . . . . . 14 (𝑘 = 𝐾 → (¬ (𝑎𝑘)𝐸(𝑎𝑙) ↔ ¬ (𝑎𝐾)𝐸(𝑎𝑙)))
2322orbi2d 914 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))))
2423rabbidv 3435 . . . . . . . . . . . 12 (𝑘 = 𝐾 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))})
2524eqeq2d 2738 . . . . . . . . . . 11 (𝑘 = 𝐾 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))}))
2619, 25anbi12d 630 . . . . . . . . . 10 (𝑘 = 𝐾 → ((𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))})))
27 oveq2 7422 . . . . . . . . . . . . 13 (𝑙 = 𝐿 → (𝐾𝑔𝑙) = (𝐾𝑔𝐿))
2827oveq2d 7430 . . . . . . . . . . . 12 (𝑙 = 𝐿 → ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)))
2928eqeq2d 2738 . . . . . . . . . . 11 (𝑙 = 𝐿 → (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))))
30 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐿 → (𝑎𝑙) = (𝑎𝐿))
3130breq2d 5154 . . . . . . . . . . . . . . 15 (𝑙 = 𝐿 → ((𝑎𝐾)𝐸(𝑎𝑙) ↔ (𝑎𝐾)𝐸(𝑎𝐿)))
3231notbid 318 . . . . . . . . . . . . . 14 (𝑙 = 𝐿 → (¬ (𝑎𝐾)𝐸(𝑎𝑙) ↔ ¬ (𝑎𝐾)𝐸(𝑎𝐿)))
3332orbi2d 914 . . . . . . . . . . . . 13 (𝑙 = 𝐿 → ((¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))))
3433rabbidv 3435 . . . . . . . . . . . 12 (𝑙 = 𝐿 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
3534eqeq2d 2738 . . . . . . . . . . 11 (𝑙 = 𝐿 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
3629, 35anbi12d 630 . . . . . . . . . 10 (𝑙 = 𝐿 → ((𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})))
3726, 36rspc2ev 3620 . . . . . . . . 9 ((𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
3811, 12, 16, 37syl3anc 1369 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
3938orcd 872 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
40 oveq1 7421 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (𝑖𝑔𝑗) = (𝐼𝑔𝑗))
4140oveq1d 7429 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)))
4241eqeq2d 2738 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
43 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → (𝑎𝑖) = (𝑎𝐼))
4443breq1d 5152 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → ((𝑎𝑖)𝐸(𝑎𝑗) ↔ (𝑎𝐼)𝐸(𝑎𝑗)))
4544notbid 318 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (¬ (𝑎𝑖)𝐸(𝑎𝑗) ↔ ¬ (𝑎𝐼)𝐸(𝑎𝑗)))
4645orbi1d 915 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → ((¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))))
4746rabbidv 3435 . . . . . . . . . . . 12 (𝑖 = 𝐼 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})
4847eqeq2d 2738 . . . . . . . . . . 11 (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
4942, 48anbi12d 630 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
50492rexbidv 3214 . . . . . . . . 9 (𝑖 = 𝐼 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
51 eqidd 2728 . . . . . . . . . . . . 13 (𝑖 = 𝐼𝑛 = 𝑛)
5251, 40goaleq12d 34897 . . . . . . . . . . . 12 (𝑖 = 𝐼 → ∀𝑔𝑛(𝑖𝑔𝑗) = ∀𝑔𝑛(𝐼𝑔𝑗))
5352eqeq2d 2738 . . . . . . . . . . 11 (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗)))
54 eqeq1 2731 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (𝑖 = 𝑛𝐼 = 𝑛))
55 biidd 262 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)) ↔ if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗))))
5643breq1d 5152 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐼 → ((𝑎𝑖)𝐸𝑧 ↔ (𝑎𝐼)𝐸𝑧))
5756, 44ifpbi23d 1078 . . . . . . . . . . . . . . 15 (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)) ↔ if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))))
5854, 55, 57ifpbi123d 1077 . . . . . . . . . . . . . 14 (𝑖 = 𝐼 → (if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))))
5958ralbidv 3172 . . . . . . . . . . . . 13 (𝑖 = 𝐼 → (∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗))) ↔ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))))
6059rabbidv 3435 . . . . . . . . . . . 12 (𝑖 = 𝐼 → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})
6160eqeq2d 2738 . . . . . . . . . . 11 (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}))
6253, 61anbi12d 630 . . . . . . . . . 10 (𝑖 = 𝐼 → ((𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})))
6362rexbidv 3173 . . . . . . . . 9 (𝑖 = 𝐼 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})))
6450, 63orbi12d 917 . . . . . . . 8 (𝑖 = 𝐼 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}))))
65 oveq2 7422 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (𝐼𝑔𝑗) = (𝐼𝑔𝐽))
6665oveq1d 7429 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)))
6766eqeq2d 2738 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙))))
68 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑎𝑗) = (𝑎𝐽))
6968breq2d 5154 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑎𝐼)𝐸(𝑎𝑗) ↔ (𝑎𝐼)𝐸(𝑎𝐽)))
7069notbid 318 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (¬ (𝑎𝐼)𝐸(𝑎𝑗) ↔ ¬ (𝑎𝐼)𝐸(𝑎𝐽)))
7170orbi1d 915 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → ((¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙)) ↔ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))))
7271rabbidv 3435 . . . . . . . . . . . 12 (𝑗 = 𝐽 → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})
7372eqeq2d 2738 . . . . . . . . . . 11 (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
7467, 73anbi12d 630 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
75742rexbidv 3214 . . . . . . . . 9 (𝑗 = 𝐽 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
76 eqidd 2728 . . . . . . . . . . . . 13 (𝑗 = 𝐽𝑛 = 𝑛)
7776, 65goaleq12d 34897 . . . . . . . . . . . 12 (𝑗 = 𝐽 → ∀𝑔𝑛(𝐼𝑔𝑗) = ∀𝑔𝑛(𝐼𝑔𝐽))
7877eqeq2d 2738 . . . . . . . . . . 11 (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽)))
79 eqeq1 2731 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑗 = 𝑛𝐽 = 𝑛))
80 biidd 262 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑧𝐸𝑧𝑧𝐸𝑧))
8168breq2d 5154 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑧𝐸(𝑎𝑗) ↔ 𝑧𝐸(𝑎𝐽)))
8279, 80, 81ifpbi123d 1077 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)) ↔ if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽))))
83 biidd 262 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝑎𝐼)𝐸𝑧 ↔ (𝑎𝐼)𝐸𝑧))
8479, 83, 69ifpbi123d 1077 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)) ↔ if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽))))
8582, 84ifpbi23d 1078 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
8685ralbidv 3172 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗))) ↔ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))))
8786rabbidv 3435 . . . . . . . . . . . 12 (𝑗 = 𝐽 → {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})
8887eqeq2d 2738 . . . . . . . . . . 11 (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))
8978, 88anbi12d 630 . . . . . . . . . 10 (𝑗 = 𝐽 → ((𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
9089rexbidv 3173 . . . . . . . . 9 (𝑗 = 𝐽 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))})))
9175, 90orbi12d 917 . . . . . . . 8 (𝑗 = 𝐽 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))))
9264, 91rspc2ev 3620 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼𝑔𝐽) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝐽)), if-(𝐽 = 𝑛, (𝑎𝐼)𝐸𝑧, (𝑎𝐼)𝐸(𝑎𝐽)))}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
939, 10, 39, 92syl3anc 1369 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
9413ovexi 7448 . . . . . . . 8 𝑋 ∈ V
9594a1i 11 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ V)
96 ovex 7447 . . . . . . . 8 (𝑀m ω) ∈ V
9796rabex 5328 . . . . . . 7 {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} ∈ V
98 eqeq1 2731 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ↔ 𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙))))
99 eqeq1 2731 . . . . . . . . . . . 12 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}))
10098, 99bi2anan9 637 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
1011002rexbidv 3214 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))})))
102 eqeq1 2731 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗)))
103 eqeq1 2731 . . . . . . . . . . . 12 (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))} ↔ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))
104102, 103bi2anan9 637 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
105104rexbidv 3173 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})))
106101, 105orbi12d 917 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
1071062rexbidv 3214 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))})) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
108107opelopabga 5529 . . . . . . 7 ((𝑋 ∈ V ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} ∈ V) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
10995, 97, 108sylancl 585 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))))
11093, 109mpbird 257 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})
111110olcd 873 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘∅) ∨ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
112 elun 4144 . . . 4 (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}) ↔ (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘∅) ∨ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
113111, 112sylibr 233 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
114 eqid 2727 . . . . . 6 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
115114satfv1 34909 . . . . 5 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘1o) = (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))}))
116115eleq2d 2814 . . . 4 ((𝑀𝑉𝐸𝑊) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})))
1171163ad2ant1 1131 . . 3 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) ↔ ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖𝑔𝑗)⊼𝑔(𝑘𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝑖)𝐸(𝑎𝑗) ∨ ¬ (𝑎𝑘)𝐸(𝑎𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎𝑗)), if-(𝑗 = 𝑛, (𝑎𝑖)𝐸𝑧, (𝑎𝑖)𝐸(𝑎𝑗)))}))})))
118113, 117mpbird 257 . 2 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o))
119 funopfv 6943 . 2 (Fun ((𝑀 Sat 𝐸)‘1o) → (⟨𝑋, {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}⟩ ∈ ((𝑀 Sat 𝐸)‘1o) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))}))
1208, 118, 119sylc 65 1 (((𝑀𝑉𝐸𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)𝐸(𝑎𝐽) ∨ ¬ (𝑎𝐾)𝐸(𝑎𝐿))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  if-wif 1061  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  {crab 3427  Vcvv 3469  cun 3942  c0 4318  cop 4630   class class class wbr 5142  {copab 5204  Fun wfun 6536  cfv 6542  (class class class)co 7414  ωcom 7864  1oc1o 8473  m cmap 8836  𝑔cgoe 34879  𝑔cgna 34880  𝑔cgol 34881   Sat csat 34882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8838  df-goel 34886  df-gona 34887  df-goal 34888  df-sat 34889  df-fmla 34891
This theorem is referenced by:  satefvfmla1  34971
  Copyright terms: Public domain W3C validator