Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝑀 ∈ 𝑉) |
2 | | simpr 485 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 𝐸 ∈ 𝑊) |
3 | | 1onn 8470 |
. . . . . 6
⊢
1o ∈ ω |
4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → 1o ∈
ω) |
5 | 1, 2, 4 | 3jca 1127 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈
ω)) |
6 | 5 | 3ad2ant1 1132 |
. . 3
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈
ω)) |
7 | | satffun 33371 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω) →
Fun ((𝑀 Sat 𝐸)‘1o)) |
8 | 6, 7 | syl 17 |
. 2
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat 𝐸)‘1o)) |
9 | | simp2l 1198 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐼 ∈ ω) |
10 | | simp2r 1199 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐽 ∈ ω) |
11 | | simp3l 1200 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐾 ∈ ω) |
12 | | simp3r 1201 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝐿 ∈ ω) |
13 | | satfv1fvfmla1.x |
. . . . . . . . . . 11
⊢ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) |
14 | | eqid 2738 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} |
15 | 13, 14 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) |
16 | 15 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))})) |
17 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → (𝑘∈𝑔𝑙) = (𝐾∈𝑔𝑙)) |
18 | 17 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙))) |
19 | 18 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙)))) |
20 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐾 → (𝑎‘𝑘) = (𝑎‘𝐾)) |
21 | 20 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐾 → ((𝑎‘𝑘)𝐸(𝑎‘𝑙) ↔ (𝑎‘𝐾)𝐸(𝑎‘𝑙))) |
22 | 21 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐾 → (¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙) ↔ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))) |
23 | 22 | orbi2d 913 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → ((¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙)) ↔ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙)))) |
24 | 23 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))}) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))})) |
26 | 19, 25 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ((𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))}))) |
27 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝐿 → (𝐾∈𝑔𝑙) = (𝐾∈𝑔𝐿)) |
28 | 27 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝐿 → ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙)) = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿))) |
29 | 28 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐿 → (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙)) ↔ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)))) |
30 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝐿 → (𝑎‘𝑙) = (𝑎‘𝐿)) |
31 | 30 | breq2d 5086 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝐿 → ((𝑎‘𝐾)𝐸(𝑎‘𝑙) ↔ (𝑎‘𝐾)𝐸(𝑎‘𝐿))) |
32 | 31 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝐿 → (¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙) ↔ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))) |
33 | 32 | orbi2d 913 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝐿 → ((¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙)) ↔ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿)))) |
34 | 33 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝐿 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) |
35 | 34 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝐿 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))})) |
36 | 29, 35 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑙 = 𝐿 → ((𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝑙))}) ↔ (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}))) |
37 | 26, 36 | rspc2ev 3572 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝐾∈𝑔𝐿)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))})) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
38 | 11, 12, 16, 37 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
39 | 38 | orcd 870 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}))) |
40 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (𝑖∈𝑔𝑗) = (𝐼∈𝑔𝑗)) |
41 | 40 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙))) |
42 | 41 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
43 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐼 → (𝑎‘𝑖) = (𝑎‘𝐼)) |
44 | 43 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → ((𝑎‘𝑖)𝐸(𝑎‘𝑗) ↔ (𝑎‘𝐼)𝐸(𝑎‘𝑗))) |
45 | 44 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐼 → (¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ↔ ¬ (𝑎‘𝐼)𝐸(𝑎‘𝑗))) |
46 | 45 | orbi1d 914 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → ((¬ (𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙)) ↔ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙)))) |
47 | 46 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) |
48 | 47 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
49 | 42, 48 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → ((𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
50 | 49 | 2rexbidv 3229 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
51 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → 𝑛 = 𝑛) |
52 | 51, 40 | goaleq12d 33313 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → ∀𝑔𝑛(𝑖∈𝑔𝑗) = ∀𝑔𝑛(𝐼∈𝑔𝑗)) |
53 | 52 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗))) |
54 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → (𝑖 = 𝑛 ↔ 𝐼 = 𝑛)) |
55 | | biidd 261 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)) ↔ if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)))) |
56 | 43 | breq1d 5084 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝐼 → ((𝑎‘𝑖)𝐸𝑧 ↔ (𝑎‘𝐼)𝐸𝑧)) |
57 | 56, 44 | ifpbi23d 1079 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝐼 → (if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)) ↔ if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))) |
58 | 54, 55, 57 | ifpbi123d 1077 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝐼 → (if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗))))) |
59 | 58 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝐼 → (∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗))) ↔ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗))))) |
60 | 59 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))}) |
61 | 60 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))})) |
62 | 53, 61 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → ((𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))}))) |
63 | 62 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))}))) |
64 | 50, 63 | orbi12d 916 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))})))) |
65 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (𝐼∈𝑔𝑗) = (𝐼∈𝑔𝐽)) |
66 | 65 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙))) |
67 | 66 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)))) |
68 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑎‘𝑗) = (𝑎‘𝐽)) |
69 | 68 | breq2d 5086 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → ((𝑎‘𝐼)𝐸(𝑎‘𝑗) ↔ (𝑎‘𝐼)𝐸(𝑎‘𝐽))) |
70 | 69 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (¬ (𝑎‘𝐼)𝐸(𝑎‘𝑗) ↔ ¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽))) |
71 | 70 | orbi1d 914 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → ((¬ (𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙)) ↔ (¬ (𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙)))) |
72 | 71 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) |
73 | 72 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
74 | 67, 73 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → ((𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
75 | 74 | 2rexbidv 3229 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
76 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → 𝑛 = 𝑛) |
77 | 76, 65 | goaleq12d 33313 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → ∀𝑔𝑛(𝐼∈𝑔𝑗) = ∀𝑔𝑛(𝐼∈𝑔𝐽)) |
78 | 77 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽))) |
79 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑗 = 𝑛 ↔ 𝐽 = 𝑛)) |
80 | | biidd 261 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑧𝐸𝑧 ↔ 𝑧𝐸𝑧)) |
81 | 68 | breq2d 5086 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → (𝑧𝐸(𝑎‘𝑗) ↔ 𝑧𝐸(𝑎‘𝐽))) |
82 | 79, 80, 81 | ifpbi123d 1077 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)) ↔ if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)))) |
83 | | biidd 261 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐽 → ((𝑎‘𝐼)𝐸𝑧 ↔ (𝑎‘𝐼)𝐸𝑧)) |
84 | 79, 83, 69 | ifpbi123d 1077 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐽 → (if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)) ↔ if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))) |
85 | 82, 84 | ifpbi23d 1079 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐽 → (if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗))) ↔ if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
86 | 85 | ralbidv 3112 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝐽 → (∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗))) ↔ ∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽))))) |
87 | 86 | rabbidv 3414 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝐽 → {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}) |
88 | 87 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → ({𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))})) |
89 | 78, 88 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → ((𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}))) |
90 | 89 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}))) |
91 | 75, 90 | orbi12d 916 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))})))) |
92 | 64, 91 | rspc2ev 3572 |
. . . . . . 7
⊢ ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧
(∃𝑘 ∈ ω
∃𝑙 ∈ ω
(𝑋 = ((𝐼∈𝑔𝐽)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝐼∈𝑔𝐽) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝐼 = 𝑛, if-(𝐽 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝐽)), if-(𝐽 = 𝑛, (𝑎‘𝐼)𝐸𝑧, (𝑎‘𝐼)𝐸(𝑎‘𝐽)))}))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
93 | 9, 10, 39, 92 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
94 | 13 | ovexi 7309 |
. . . . . . . 8
⊢ 𝑋 ∈ V |
95 | 94 | a1i 11 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ V) |
96 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑀 ↑m ω)
∈ V |
97 | 96 | rabex 5256 |
. . . . . . 7
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} ∈ V |
98 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ↔ 𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)))) |
99 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))})) |
100 | 98, 99 | bi2anan9 636 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → ((𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
101 | 100 | 2rexbidv 3229 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}))) |
102 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ↔ 𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗))) |
103 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))} ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) |
104 | 102, 103 | bi2anan9 636 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → ((𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) ↔ (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
105 | 104 | rexbidv 3226 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → (∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}) ↔ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))) |
106 | 101, 105 | orbi12d 916 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → ((∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) ↔ (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
107 | 106 | 2rexbidv 3229 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
108 | 107 | opelopabga 5446 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} ∈ V) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
109 | 95, 97, 108 | sylancl 586 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))} ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑋 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑋 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))} = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))})))) |
110 | 93, 109 | mpbird 256 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))}) |
111 | 110 | olcd 871 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘∅) ∨ 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |
112 | | elun 4083 |
. . . 4
⊢
(〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))}) ↔ (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘∅) ∨ 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |
113 | 111, 112 | sylibr 233 |
. . 3
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |
114 | | eqid 2738 |
. . . . . 6
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) |
115 | 114 | satfv1 33325 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘1o) = (((𝑀 Sat 𝐸)‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))})) |
116 | 115 | eleq2d 2824 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘1o) ↔ 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))}))) |
117 | 116 | 3ad2ant1 1132 |
. . 3
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘1o) ↔ 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ (((𝑀 Sat 𝐸)‘∅) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = ((𝑖∈𝑔𝑗)⊼𝑔(𝑘∈𝑔𝑙)) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝑖)𝐸(𝑎‘𝑗) ∨ ¬ (𝑎‘𝑘)𝐸(𝑎‘𝑙))}) ∨ ∃𝑛 ∈ ω (𝑥 = ∀𝑔𝑛(𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 if-(𝑖 = 𝑛, if-(𝑗 = 𝑛, 𝑧𝐸𝑧, 𝑧𝐸(𝑎‘𝑗)), if-(𝑗 = 𝑛, (𝑎‘𝑖)𝐸𝑧, (𝑎‘𝑖)𝐸(𝑎‘𝑗)))}))}))) |
118 | 113, 117 | mpbird 256 |
. 2
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘1o)) |
119 | | funopfv 6821 |
. 2
⊢ (Fun
((𝑀 Sat 𝐸)‘1o) → (〈𝑋, {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}〉 ∈ ((𝑀 Sat 𝐸)‘1o) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))})) |
120 | 8, 118, 119 | sylc 65 |
1
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat 𝐸)‘1o)‘𝑋) = {𝑎 ∈ (𝑀 ↑m ω) ∣ (¬
(𝑎‘𝐼)𝐸(𝑎‘𝐽) ∨ ¬ (𝑎‘𝐾)𝐸(𝑎‘𝐿))}) |