| Step | Hyp | Ref
| Expression |
| 1 | | subgrv 29287 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
| 2 | 1 | simpld 494 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → 𝑆 ∈ V) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 4 | | eqid 2737 |
. . . . . 6
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 5 | 3, 4 | iswlkg 29631 |
. . . . 5
⊢ (𝑆 ∈ V → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))))) |
| 6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))))) |
| 7 | | 3simpa 1149 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆))) |
| 8 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 9 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 10 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
| 11 | 3, 8, 4, 9, 10 | subgrprop2 29291 |
. . . . . . . . . 10
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 12 | 11 | simp2d 1144 |
. . . . . . . . 9
⊢ (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) |
| 13 | | dmss 5913 |
. . . . . . . . 9
⊢
((iEdg‘𝑆)
⊆ (iEdg‘𝐺)
→ dom (iEdg‘𝑆)
⊆ dom (iEdg‘𝐺)) |
| 14 | | sswrd 14560 |
. . . . . . . . 9
⊢ (dom
(iEdg‘𝑆) ⊆ dom
(iEdg‘𝐺) → Word
dom (iEdg‘𝑆) ⊆
Word dom (iEdg‘𝐺)) |
| 15 | 12, 13, 14 | 3syl 18 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → Word dom (iEdg‘𝑆) ⊆ Word dom
(iEdg‘𝐺)) |
| 16 | 15 | sseld 3982 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝐹 ∈ Word dom (iEdg‘𝑆) → 𝐹 ∈ Word dom (iEdg‘𝐺))) |
| 17 | 11 | simp1d 1143 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
| 18 | | fss 6752 |
. . . . . . . . 9
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 19 | 18 | expcom 413 |
. . . . . . . 8
⊢
((Vtx‘𝑆)
⊆ (Vtx‘𝐺)
→ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
| 20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
| 21 | 16, 20 | anim12d 609 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))) |
| 22 | 7, 21 | syl5 34 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))) |
| 23 | | 3simpb 1150 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))))) |
| 24 | 3, 8, 4, 9, 10 | subgrprop 29290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
| 25 | 24 | simp2d 1144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
| 26 | 25 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 SubGraph 𝐺 → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘))) |
| 27 | 26 | 3ad2ant1 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘))) |
| 28 | | wrdsymbcl 14565 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑘 ∈
(0..^(♯‘𝐹)))
→ (𝐹‘𝑘) ∈ dom (iEdg‘𝑆)) |
| 29 | 28 | fvresd 6926 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑘 ∈
(0..^(♯‘𝐹)))
→ (((iEdg‘𝐺)
↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
| 30 | 29 | 3adant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
| 31 | 27, 30 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
| 32 | 31 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
| 33 | 31 | sseq2d 4016 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)) ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) |
| 34 | 32, 33 | ifpbi23d 1080 |
. . . . . . . . . . 11
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 35 | 34 | biimpd 229 |
. . . . . . . . . 10
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 36 | 35 | 3expia 1122 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 37 | 36 | ralrimiv 3145 |
. . . . . . . 8
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → ∀𝑘 ∈
(0..^(♯‘𝐹))(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 38 | | ralim 3086 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 40 | 39 | expimpd 453 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 41 | 23, 40 | syl5 34 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 42 | 22, 41 | jcad 512 |
. . . 4
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 43 | 6, 42 | sylbid 240 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 44 | | df-3an 1089 |
. . 3
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 45 | 43, 44 | imbitrrdi 252 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 46 | 8, 9 | iswlkg 29631 |
. . 3
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 47 | 1, 46 | simpl2im 503 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
| 48 | 45, 47 | sylibrd 259 |
1
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → 𝐹(Walks‘𝐺)𝑃)) |