Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subgrwlk Structured version   Visualization version   GIF version

Theorem subgrwlk 35126
Description: If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.)
Assertion
Ref Expression
subgrwlk (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))

Proof of Theorem subgrwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 subgrv 29204 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
21simpld 494 . . . . 5 (𝑆 SubGraph 𝐺𝑆 ∈ V)
3 eqid 2730 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
4 eqid 2730 . . . . . 6 (iEdg‘𝑆) = (iEdg‘𝑆)
53, 4iswlkg 29548 . . . . 5 (𝑆 ∈ V → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
62, 5syl 17 . . . 4 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
7 3simpa 1148 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)))
8 eqid 2730 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2730 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
10 eqid 2730 . . . . . . . . . . 11 (Edg‘𝑆) = (Edg‘𝑆)
113, 8, 4, 9, 10subgrprop2 29208 . . . . . . . . . 10 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1211simp2d 1143 . . . . . . . . 9 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
13 dmss 5869 . . . . . . . . 9 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
14 sswrd 14494 . . . . . . . . 9 (dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺) → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1512, 13, 143syl 18 . . . . . . . 8 (𝑆 SubGraph 𝐺 → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1615sseld 3948 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝐹 ∈ Word dom (iEdg‘𝑆) → 𝐹 ∈ Word dom (iEdg‘𝐺)))
1711simp1d 1142 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
18 fss 6707 . . . . . . . . 9 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
1918expcom 413 . . . . . . . 8 ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2017, 19syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2116, 20anim12d 609 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
227, 21syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
23 3simpb 1149 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))))
243, 8, 4, 9, 10subgrprop 29207 . . . . . . . . . . . . . . . . 17 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
2524simp2d 1143 . . . . . . . . . . . . . . . 16 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
2625fveq1d 6863 . . . . . . . . . . . . . . 15 (𝑆 SubGraph 𝐺 → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
27263ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
28 wrdsymbcl 14499 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom (iEdg‘𝑆))
2928fvresd 6881 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
30293adant1 1130 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3127, 30eqtrd 2765 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3231eqeq1d 2732 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}))
3331sseq2d 3982 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
3432, 33ifpbi23d 1079 . . . . . . . . . . 11 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3534biimpd 229 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
36353expia 1121 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3736ralrimiv 3125 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
38 ralim 3070 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3937, 38syl 17 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4039expimpd 453 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4123, 40syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4222, 41jcad 512 . . . 4 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
436, 42sylbid 240 . . 3 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
44 df-3an 1088 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4543, 44imbitrrdi 252 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
468, 9iswlkg 29548 . . 3 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
471, 46simpl2im 503 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
4845, 47sylibrd 259 1 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  𝒫 cpw 4566  {csn 4592  {cpr 4594   class class class wbr 5110  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981   SubGraph csubgr 29201  Walkscwlks 29531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-subgr 29202  df-wlks 29534
This theorem is referenced by:  subgrtrl  35127
  Copyright terms: Public domain W3C validator