Step | Hyp | Ref
| Expression |
1 | | subgrv 27540 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V)) |
2 | 1 | simpld 494 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → 𝑆 ∈ V) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
4 | | eqid 2738 |
. . . . . 6
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
5 | 3, 4 | iswlkg 27883 |
. . . . 5
⊢ (𝑆 ∈ V → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))))) |
6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))))) |
7 | | 3simpa 1146 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆))) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
9 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
10 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Edg‘𝑆) =
(Edg‘𝑆) |
11 | 3, 8, 4, 9, 10 | subgrprop2 27544 |
. . . . . . . . . 10
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
12 | 11 | simp2d 1141 |
. . . . . . . . 9
⊢ (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) ⊆ (iEdg‘𝐺)) |
13 | | dmss 5800 |
. . . . . . . . 9
⊢
((iEdg‘𝑆)
⊆ (iEdg‘𝐺)
→ dom (iEdg‘𝑆)
⊆ dom (iEdg‘𝐺)) |
14 | | sswrd 14153 |
. . . . . . . . 9
⊢ (dom
(iEdg‘𝑆) ⊆ dom
(iEdg‘𝐺) → Word
dom (iEdg‘𝑆) ⊆
Word dom (iEdg‘𝐺)) |
15 | 12, 13, 14 | 3syl 18 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → Word dom (iEdg‘𝑆) ⊆ Word dom
(iEdg‘𝐺)) |
16 | 15 | sseld 3916 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝐹 ∈ Word dom (iEdg‘𝑆) → 𝐹 ∈ Word dom (iEdg‘𝐺))) |
17 | 11 | simp1d 1140 |
. . . . . . . 8
⊢ (𝑆 SubGraph 𝐺 → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
18 | | fss 6601 |
. . . . . . . . 9
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
19 | 18 | expcom 413 |
. . . . . . . 8
⊢
((Vtx‘𝑆)
⊆ (Vtx‘𝐺)
→ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
20 | 17, 19 | syl 17 |
. . . . . . 7
⊢ (𝑆 SubGraph 𝐺 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
21 | 16, 20 | anim12d 608 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))) |
22 | 7, 21 | syl5 34 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))) |
23 | | 3simpb 1147 |
. . . . . 6
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))))) |
24 | 3, 8, 4, 9, 10 | subgrprop 27543 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))) |
25 | 24 | simp2d 1141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))) |
26 | 25 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 SubGraph 𝐺 → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘))) |
27 | 26 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘))) |
28 | | wrdsymbcl 14158 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑘 ∈
(0..^(♯‘𝐹)))
→ (𝐹‘𝑘) ∈ dom (iEdg‘𝑆)) |
29 | 28 | fvresd 6776 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝑆) ∧ 𝑘 ∈
(0..^(♯‘𝐹)))
→ (((iEdg‘𝐺)
↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
30 | 29 | 3adant1 1128 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
31 | 27, 30 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹‘𝑘)) = ((iEdg‘𝐺)‘(𝐹‘𝑘))) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
33 | 31 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)) ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) |
34 | 32, 33 | ifpbi23d 1078 |
. . . . . . . . . . 11
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
35 | 34 | biimpd 228 |
. . . . . . . . . 10
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
36 | 35 | 3expia 1119 |
. . . . . . . . 9
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
37 | 36 | ralrimiv 3106 |
. . . . . . . 8
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → ∀𝑘 ∈
(0..^(♯‘𝐹))(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
38 | | ralim 3082 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0..^(♯‘𝐹))(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
39 | 37, 38 | syl 17 |
. . . . . . 7
⊢ ((𝑆 SubGraph 𝐺 ∧ 𝐹 ∈ Word dom (iEdg‘𝑆)) → (∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
40 | 39 | expimpd 453 |
. . . . . 6
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
41 | 23, 40 | syl5 34 |
. . . . 5
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
42 | 22, 41 | jcad 512 |
. . . 4
⊢ (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹‘𝑘)))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
43 | 6, 42 | sylbid 239 |
. . 3
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
44 | | df-3an 1087 |
. . 3
⊢ ((𝐹 ∈ Word dom
(iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈
(0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
45 | 43, 44 | syl6ibr 251 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
46 | 8, 9 | iswlkg 27883 |
. . 3
⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
47 | 1, 46 | simpl2im 503 |
. 2
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘𝑘)))))) |
48 | 45, 47 | sylibrd 258 |
1
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → 𝐹(Walks‘𝐺)𝑃)) |