Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subgrwlk Structured version   Visualization version   GIF version

Theorem subgrwlk 35104
Description: If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.)
Assertion
Ref Expression
subgrwlk (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))

Proof of Theorem subgrwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 subgrv 29233 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
21simpld 494 . . . . 5 (𝑆 SubGraph 𝐺𝑆 ∈ V)
3 eqid 2729 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
4 eqid 2729 . . . . . 6 (iEdg‘𝑆) = (iEdg‘𝑆)
53, 4iswlkg 29577 . . . . 5 (𝑆 ∈ V → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
62, 5syl 17 . . . 4 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
7 3simpa 1148 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)))
8 eqid 2729 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2729 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
10 eqid 2729 . . . . . . . . . . 11 (Edg‘𝑆) = (Edg‘𝑆)
113, 8, 4, 9, 10subgrprop2 29237 . . . . . . . . . 10 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1211simp2d 1143 . . . . . . . . 9 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
13 dmss 5849 . . . . . . . . 9 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
14 sswrd 14447 . . . . . . . . 9 (dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺) → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1512, 13, 143syl 18 . . . . . . . 8 (𝑆 SubGraph 𝐺 → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1615sseld 3936 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝐹 ∈ Word dom (iEdg‘𝑆) → 𝐹 ∈ Word dom (iEdg‘𝐺)))
1711simp1d 1142 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
18 fss 6672 . . . . . . . . 9 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
1918expcom 413 . . . . . . . 8 ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2017, 19syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2116, 20anim12d 609 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
227, 21syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
23 3simpb 1149 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))))
243, 8, 4, 9, 10subgrprop 29236 . . . . . . . . . . . . . . . . 17 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
2524simp2d 1143 . . . . . . . . . . . . . . . 16 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
2625fveq1d 6828 . . . . . . . . . . . . . . 15 (𝑆 SubGraph 𝐺 → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
27263ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
28 wrdsymbcl 14452 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom (iEdg‘𝑆))
2928fvresd 6846 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
30293adant1 1130 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3127, 30eqtrd 2764 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3231eqeq1d 2731 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}))
3331sseq2d 3970 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
3432, 33ifpbi23d 1079 . . . . . . . . . . 11 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3534biimpd 229 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
36353expia 1121 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3736ralrimiv 3120 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
38 ralim 3069 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3937, 38syl 17 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4039expimpd 453 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4123, 40syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4222, 41jcad 512 . . . 4 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
436, 42sylbid 240 . . 3 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
44 df-3an 1088 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4543, 44imbitrrdi 252 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
468, 9iswlkg 29577 . . 3 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
471, 46simpl2im 503 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
4845, 47sylibrd 259 1 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  𝒫 cpw 4553  {csn 4579  {cpr 4581   class class class wbr 5095  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010   SubGraph csubgr 29230  Walkscwlks 29560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-subgr 29231  df-wlks 29563
This theorem is referenced by:  subgrtrl  35105
  Copyright terms: Public domain W3C validator