Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subgrwlk Structured version   Visualization version   GIF version

Theorem subgrwlk 35137
Description: If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.)
Assertion
Ref Expression
subgrwlk (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))

Proof of Theorem subgrwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 subgrv 29287 . . . . . 6 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
21simpld 494 . . . . 5 (𝑆 SubGraph 𝐺𝑆 ∈ V)
3 eqid 2737 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
4 eqid 2737 . . . . . 6 (iEdg‘𝑆) = (iEdg‘𝑆)
53, 4iswlkg 29631 . . . . 5 (𝑆 ∈ V → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
62, 5syl 17 . . . 4 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))))))
7 3simpa 1149 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)))
8 eqid 2737 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2737 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
10 eqid 2737 . . . . . . . . . . 11 (Edg‘𝑆) = (Edg‘𝑆)
113, 8, 4, 9, 10subgrprop2 29291 . . . . . . . . . 10 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
1211simp2d 1144 . . . . . . . . 9 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
13 dmss 5913 . . . . . . . . 9 ((iEdg‘𝑆) ⊆ (iEdg‘𝐺) → dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺))
14 sswrd 14560 . . . . . . . . 9 (dom (iEdg‘𝑆) ⊆ dom (iEdg‘𝐺) → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1512, 13, 143syl 18 . . . . . . . 8 (𝑆 SubGraph 𝐺 → Word dom (iEdg‘𝑆) ⊆ Word dom (iEdg‘𝐺))
1615sseld 3982 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝐹 ∈ Word dom (iEdg‘𝑆) → 𝐹 ∈ Word dom (iEdg‘𝐺)))
1711simp1d 1143 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
18 fss 6752 . . . . . . . . 9 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
1918expcom 413 . . . . . . . 8 ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2017, 19syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)))
2116, 20anim12d 609 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
227, 21syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))))
23 3simpb 1150 . . . . . 6 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))))
243, 8, 4, 9, 10subgrprop 29290 . . . . . . . . . . . . . . . . 17 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
2524simp2d 1144 . . . . . . . . . . . . . . . 16 (𝑆 SubGraph 𝐺 → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
2625fveq1d 6908 . . . . . . . . . . . . . . 15 (𝑆 SubGraph 𝐺 → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
27263ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)))
28 wrdsymbcl 14565 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom (iEdg‘𝑆))
2928fvresd 6926 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
30293adant1 1131 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3127, 30eqtrd 2777 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝑆)‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘)))
3231eqeq1d 2739 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}))
3331sseq2d 4016 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
3432, 33ifpbi23d 1080 . . . . . . . . . . 11 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3534biimpd 229 . . . . . . . . . 10 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
36353expia 1122 . . . . . . . . 9 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
3736ralrimiv 3145 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → ∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
38 ralim 3086 . . . . . . . 8 (∀𝑘 ∈ (0..^(♯‘𝐹))(if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
3937, 38syl 17 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐹 ∈ Word dom (iEdg‘𝑆)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4039expimpd 453 . . . . . 6 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4123, 40syl5 34 . . . . 5 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4222, 41jcad 512 . . . 4 (𝑆 SubGraph 𝐺 → ((𝐹 ∈ Word dom (iEdg‘𝑆) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝑆) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐹𝑘)))) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
436, 42sylbid 240 . . 3 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
44 df-3an 1089 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
4543, 44imbitrrdi 252 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
468, 9iswlkg 29631 . . 3 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
471, 46simpl2im 503 . 2 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
4845, 47sylibrd 259 1 (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃𝐹(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  if-wif 1063  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  𝒫 cpw 4600  {csn 4626  {cpr 4628   class class class wbr 5143  dom cdm 5685  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552  Vtxcvtx 29013  iEdgciedg 29014  Edgcedg 29064   SubGraph csubgr 29284  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-subgr 29285  df-wlks 29617
This theorem is referenced by:  subgrtrl  35138
  Copyright terms: Public domain W3C validator