Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0disjsuc Structured version   Visualization version   GIF version

Theorem fmla0disjsuc 33405
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmla0disjsuc ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Distinct variable group:   𝑢,𝑖,𝑣,𝑥

Proof of Theorem fmla0disjsuc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 33389 . . . 4 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
2 rabab 3465 . . . 4 {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
31, 2eqtri 2764 . . 3 (Fmla‘∅) = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
43ineq1i 4148 . 2 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
5 inab 4239 . . 3 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))}
6 goel 33354 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑗𝑔𝑘) = ⟨∅, ⟨𝑗, 𝑘⟩⟩)
76eqeq2d 2747 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) ↔ 𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩))
8 1n0 8349 . . . . . . . . . . . . . . . . . . . 20 1o ≠ ∅
98nesymi 2999 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ = 1o
109intnanr 489 . . . . . . . . . . . . . . . . . 18 ¬ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩)
11 gonafv 33357 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1211el2v 3445 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
1312eqeq2i 2749 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
14 0ex 5240 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ V
15 opex 5392 . . . . . . . . . . . . . . . . . . . 20 𝑗, 𝑘⟩ ∈ V
1614, 15opth 5404 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1713, 16bitri 275 . . . . . . . . . . . . . . . . . 18 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1810, 17mtbir 323 . . . . . . . . . . . . . . . . 17 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)
19 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)))
2018, 19mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = (𝑢𝑔𝑣))
217, 20syl6bi 253 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = (𝑢𝑔𝑣)))
2221imp 408 . . . . . . . . . . . . . 14 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2322adantr 482 . . . . . . . . . . . . 13 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2423ralrimivw 3144 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣))
25 2on0 8344 . . . . . . . . . . . . . . . . . . . . 21 2o ≠ ∅
2625nesymi 2999 . . . . . . . . . . . . . . . . . . . 20 ¬ ∅ = 2o
2726orci 863 . . . . . . . . . . . . . . . . . . 19 (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩)
2814, 15opth 5404 . . . . . . . . . . . . . . . . . . . . 21 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
2928notbii 320 . . . . . . . . . . . . . . . . . . . 20 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ ¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
30 ianor 980 . . . . . . . . . . . . . . . . . . . 20 (¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩) ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3129, 30bitri 275 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3227, 31mpbir 230 . . . . . . . . . . . . . . . . . 18 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
33 eqeq1 2740 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢))
34 df-goal 33349 . . . . . . . . . . . . . . . . . . . 20 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
3534eqeq2i 2749 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
3633, 35bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩))
3732, 36mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = ∀𝑔𝑖𝑢)
387, 37syl6bi 253 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = ∀𝑔𝑖𝑢))
3938imp 408 . . . . . . . . . . . . . . 15 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4039adantr 482 . . . . . . . . . . . . . 14 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4140adantr 482 . . . . . . . . . . . . 13 (((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) ∧ 𝑖 ∈ ω) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4241ralrimiva 3140 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢)
4324, 42jca 513 . . . . . . . . . . 11 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
4443ralrimiva 3140 . . . . . . . . . 10 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
45 ralnex 3073 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣))
46 ralnex 3073 . . . . . . . . . . . . . 14 (∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)
4745, 46anbi12i 628 . . . . . . . . . . . . 13 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
48 ioran 982 . . . . . . . . . . . . 13 (¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
4947, 48bitr4i 278 . . . . . . . . . . . 12 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5049ralbii 3093 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
51 ralnex 3073 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5250, 51bitri 275 . . . . . . . . . 10 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5344, 52sylib 217 . . . . . . . . 9 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5453ex 414 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5554rexlimdva 3149 . . . . . . 7 (𝑗 ∈ ω → (∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5655rexlimiv 3142 . . . . . 6 (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5756imori 852 . . . . 5 (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
58 ianor 980 . . . . 5 (¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ↔ (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5957, 58mpbir 230 . . . 4 ¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
6059abf 4342 . . 3 {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))} = ∅
615, 60eqtri 2764 . 2 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
624, 61eqtri 2764 1 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397  wo 845   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  {crab 3284  Vcvv 3437  cin 3891  c0 4262  cop 4571  cfv 6458  (class class class)co 7307  ωcom 7744  1oc1o 8321  2oc2o 8322  𝑔cgoe 33340  𝑔cgna 33341  𝑔cgol 33342  Fmlacfmla 33344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-map 8648  df-goel 33347  df-gona 33348  df-goal 33349  df-sat 33350  df-fmla 33352
This theorem is referenced by:  satffunlem1lem2  33410
  Copyright terms: Public domain W3C validator