Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0disjsuc Structured version   Visualization version   GIF version

Theorem fmla0disjsuc 35366
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmla0disjsuc ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Distinct variable group:   𝑢,𝑖,𝑣,𝑥

Proof of Theorem fmla0disjsuc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 35350 . . . 4 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
2 rabab 3520 . . . 4 {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
31, 2eqtri 2768 . . 3 (Fmla‘∅) = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
43ineq1i 4237 . 2 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
5 inab 4328 . . 3 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))}
6 goel 35315 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑗𝑔𝑘) = ⟨∅, ⟨𝑗, 𝑘⟩⟩)
76eqeq2d 2751 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) ↔ 𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩))
8 1n0 8544 . . . . . . . . . . . . . . . . . . . 20 1o ≠ ∅
98nesymi 3004 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ = 1o
109intnanr 487 . . . . . . . . . . . . . . . . . 18 ¬ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩)
11 gonafv 35318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1211el2v 3495 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
1312eqeq2i 2753 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
14 0ex 5325 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ V
15 opex 5484 . . . . . . . . . . . . . . . . . . . 20 𝑗, 𝑘⟩ ∈ V
1614, 15opth 5496 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1713, 16bitri 275 . . . . . . . . . . . . . . . . . 18 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1810, 17mtbir 323 . . . . . . . . . . . . . . . . 17 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)
19 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)))
2018, 19mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = (𝑢𝑔𝑣))
217, 20biimtrdi 253 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = (𝑢𝑔𝑣)))
2221imp 406 . . . . . . . . . . . . . 14 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2322adantr 480 . . . . . . . . . . . . 13 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2423ralrimivw 3156 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣))
25 2on0 8538 . . . . . . . . . . . . . . . . . . . . 21 2o ≠ ∅
2625nesymi 3004 . . . . . . . . . . . . . . . . . . . 20 ¬ ∅ = 2o
2726orci 864 . . . . . . . . . . . . . . . . . . 19 (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩)
2814, 15opth 5496 . . . . . . . . . . . . . . . . . . . . 21 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
2928notbii 320 . . . . . . . . . . . . . . . . . . . 20 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ ¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
30 ianor 982 . . . . . . . . . . . . . . . . . . . 20 (¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩) ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3129, 30bitri 275 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3227, 31mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
33 eqeq1 2744 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢))
34 df-goal 35310 . . . . . . . . . . . . . . . . . . . 20 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
3534eqeq2i 2753 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
3633, 35bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩))
3732, 36mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = ∀𝑔𝑖𝑢)
387, 37biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = ∀𝑔𝑖𝑢))
3938imp 406 . . . . . . . . . . . . . . 15 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4039adantr 480 . . . . . . . . . . . . . 14 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4140adantr 480 . . . . . . . . . . . . 13 (((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) ∧ 𝑖 ∈ ω) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4241ralrimiva 3152 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢)
4324, 42jca 511 . . . . . . . . . . 11 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
4443ralrimiva 3152 . . . . . . . . . 10 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
45 ralnex 3078 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣))
46 ralnex 3078 . . . . . . . . . . . . . 14 (∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)
4745, 46anbi12i 627 . . . . . . . . . . . . 13 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
48 ioran 984 . . . . . . . . . . . . 13 (¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
4947, 48bitr4i 278 . . . . . . . . . . . 12 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5049ralbii 3099 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
51 ralnex 3078 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5250, 51bitri 275 . . . . . . . . . 10 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5344, 52sylib 218 . . . . . . . . 9 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5453ex 412 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5554rexlimdva 3161 . . . . . . 7 (𝑗 ∈ ω → (∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5655rexlimiv 3154 . . . . . 6 (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5756imori 853 . . . . 5 (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
58 ianor 982 . . . . 5 (¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ↔ (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5957, 58mpbir 231 . . . 4 ¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
6059abf 4429 . . 3 {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))} = ∅
615, 60eqtri 2768 . 2 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
624, 61eqtri 2768 1 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  c0 4352  cop 4654  cfv 6573  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516  𝑔cgoe 35301  𝑔cgna 35302  𝑔cgol 35303  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-map 8886  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-fmla 35313
This theorem is referenced by:  satffunlem1lem2  35371
  Copyright terms: Public domain W3C validator