Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0disjsuc Structured version   Visualization version   GIF version

Theorem fmla0disjsuc 32876
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmla0disjsuc ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Distinct variable group:   𝑢,𝑖,𝑣,𝑥

Proof of Theorem fmla0disjsuc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 32860 . . . 4 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
2 rabab 3439 . . . 4 {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
31, 2eqtri 2781 . . 3 (Fmla‘∅) = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
43ineq1i 4113 . 2 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
5 inab 4203 . . 3 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))}
6 goel 32825 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑗𝑔𝑘) = ⟨∅, ⟨𝑗, 𝑘⟩⟩)
76eqeq2d 2769 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) ↔ 𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩))
8 1n0 8129 . . . . . . . . . . . . . . . . . . . 20 1o ≠ ∅
98nesymi 3008 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ = 1o
109intnanr 491 . . . . . . . . . . . . . . . . . 18 ¬ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩)
11 gonafv 32828 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1211el2v 3417 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
1312eqeq2i 2771 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
14 0ex 5177 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ V
15 opex 5324 . . . . . . . . . . . . . . . . . . . 20 𝑗, 𝑘⟩ ∈ V
1614, 15opth 5336 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1713, 16bitri 278 . . . . . . . . . . . . . . . . . 18 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1810, 17mtbir 326 . . . . . . . . . . . . . . . . 17 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)
19 eqeq1 2762 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)))
2018, 19mtbiri 330 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = (𝑢𝑔𝑣))
217, 20syl6bi 256 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = (𝑢𝑔𝑣)))
2221imp 410 . . . . . . . . . . . . . 14 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2322adantr 484 . . . . . . . . . . . . 13 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2423ralrimivw 3114 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣))
25 2on0 8123 . . . . . . . . . . . . . . . . . . . . 21 2o ≠ ∅
2625nesymi 3008 . . . . . . . . . . . . . . . . . . . 20 ¬ ∅ = 2o
2726orci 862 . . . . . . . . . . . . . . . . . . 19 (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩)
2814, 15opth 5336 . . . . . . . . . . . . . . . . . . . . 21 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
2928notbii 323 . . . . . . . . . . . . . . . . . . . 20 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ ¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
30 ianor 979 . . . . . . . . . . . . . . . . . . . 20 (¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩) ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3129, 30bitri 278 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3227, 31mpbir 234 . . . . . . . . . . . . . . . . . 18 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
33 eqeq1 2762 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢))
34 df-goal 32820 . . . . . . . . . . . . . . . . . . . 20 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
3534eqeq2i 2771 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
3633, 35bitrdi 290 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩))
3732, 36mtbiri 330 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = ∀𝑔𝑖𝑢)
387, 37syl6bi 256 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = ∀𝑔𝑖𝑢))
3938imp 410 . . . . . . . . . . . . . . 15 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4039adantr 484 . . . . . . . . . . . . . 14 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4140adantr 484 . . . . . . . . . . . . 13 (((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) ∧ 𝑖 ∈ ω) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4241ralrimiva 3113 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢)
4324, 42jca 515 . . . . . . . . . . 11 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
4443ralrimiva 3113 . . . . . . . . . 10 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
45 ralnex 3163 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣))
46 ralnex 3163 . . . . . . . . . . . . . 14 (∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)
4745, 46anbi12i 629 . . . . . . . . . . . . 13 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
48 ioran 981 . . . . . . . . . . . . 13 (¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
4947, 48bitr4i 281 . . . . . . . . . . . 12 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5049ralbii 3097 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
51 ralnex 3163 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5250, 51bitri 278 . . . . . . . . . 10 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5344, 52sylib 221 . . . . . . . . 9 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5453ex 416 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5554rexlimdva 3208 . . . . . . 7 (𝑗 ∈ ω → (∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5655rexlimiv 3204 . . . . . 6 (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5756imori 851 . . . . 5 (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
58 ianor 979 . . . . 5 (¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ↔ (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5957, 58mpbir 234 . . . 4 ¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
6059abf 4298 . . 3 {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))} = ∅
615, 60eqtri 2781 . 2 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
624, 61eqtri 2781 1 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2735  wral 3070  wrex 3071  {crab 3074  Vcvv 3409  cin 3857  c0 4225  cop 4528  cfv 6335  (class class class)co 7150  ωcom 7579  1oc1o 8105  2oc2o 8106  𝑔cgoe 32811  𝑔cgna 32812  𝑔cgol 32813  Fmlacfmla 32815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-map 8418  df-goel 32818  df-gona 32819  df-goal 32820  df-sat 32821  df-fmla 32823
This theorem is referenced by:  satffunlem1lem2  32881
  Copyright terms: Public domain W3C validator