Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0disjsuc Structured version   Visualization version   GIF version

Theorem fmla0disjsuc 35420
Description: The set of valid Godel formulas of height 0 is disjoint with the formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification. (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmla0disjsuc ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Distinct variable group:   𝑢,𝑖,𝑣,𝑥

Proof of Theorem fmla0disjsuc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 35404 . . . 4 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
2 rabab 3491 . . . 4 {𝑥 ∈ V ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
31, 2eqtri 2758 . . 3 (Fmla‘∅) = {𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)}
43ineq1i 4191 . 2 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
5 inab 4284 . . 3 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))}
6 goel 35369 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑗𝑔𝑘) = ⟨∅, ⟨𝑗, 𝑘⟩⟩)
76eqeq2d 2746 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) ↔ 𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩))
8 1n0 8500 . . . . . . . . . . . . . . . . . . . 20 1o ≠ ∅
98nesymi 2989 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ = 1o
109intnanr 487 . . . . . . . . . . . . . . . . . 18 ¬ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩)
11 gonafv 35372 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ V ∧ 𝑣 ∈ V) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1211el2v 3466 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩
1312eqeq2i 2748 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
14 0ex 5277 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ V
15 opex 5439 . . . . . . . . . . . . . . . . . . . 20 𝑗, 𝑘⟩ ∈ V
1614, 15opth 5451 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1713, 16bitri 275 . . . . . . . . . . . . . . . . . 18 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣) ↔ (∅ = 1o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑢, 𝑣⟩))
1810, 17mtbir 323 . . . . . . . . . . . . . . . . 17 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)
19 eqeq1 2739 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = (𝑢𝑔𝑣) ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = (𝑢𝑔𝑣)))
2018, 19mtbiri 327 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = (𝑢𝑔𝑣))
217, 20biimtrdi 253 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = (𝑢𝑔𝑣)))
2221imp 406 . . . . . . . . . . . . . 14 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2322adantr 480 . . . . . . . . . . . . 13 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = (𝑢𝑔𝑣))
2423ralrimivw 3136 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣))
25 2on0 8496 . . . . . . . . . . . . . . . . . . . . 21 2o ≠ ∅
2625nesymi 2989 . . . . . . . . . . . . . . . . . . . 20 ¬ ∅ = 2o
2726orci 865 . . . . . . . . . . . . . . . . . . 19 (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩)
2814, 15opth 5451 . . . . . . . . . . . . . . . . . . . . 21 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
2928notbii 320 . . . . . . . . . . . . . . . . . . . 20 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ ¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
30 ianor 983 . . . . . . . . . . . . . . . . . . . 20 (¬ (∅ = 2o ∧ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩) ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3129, 30bitri 275 . . . . . . . . . . . . . . . . . . 19 (¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩ ↔ (¬ ∅ = 2o ∨ ¬ ⟨𝑗, 𝑘⟩ = ⟨𝑖, 𝑢⟩))
3227, 31mpbir 231 . . . . . . . . . . . . . . . . . 18 ¬ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
33 eqeq1 2739 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢))
34 df-goal 35364 . . . . . . . . . . . . . . . . . . . 20 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
3534eqeq2i 2748 . . . . . . . . . . . . . . . . . . 19 (⟨∅, ⟨𝑗, 𝑘⟩⟩ = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
3633, 35bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ⟨∅, ⟨𝑗, 𝑘⟩⟩ = ⟨2o, ⟨𝑖, 𝑢⟩⟩))
3732, 36mtbiri 327 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨∅, ⟨𝑗, 𝑘⟩⟩ → ¬ 𝑥 = ∀𝑔𝑖𝑢)
387, 37biimtrdi 253 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ 𝑥 = ∀𝑔𝑖𝑢))
3938imp 406 . . . . . . . . . . . . . . 15 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4039adantr 480 . . . . . . . . . . . . . 14 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4140adantr 480 . . . . . . . . . . . . 13 (((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) ∧ 𝑖 ∈ ω) → ¬ 𝑥 = ∀𝑔𝑖𝑢)
4241ralrimiva 3132 . . . . . . . . . . . 12 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢)
4324, 42jca 511 . . . . . . . . . . 11 ((((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) ∧ 𝑢 ∈ (Fmla‘∅)) → (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
4443ralrimiva 3132 . . . . . . . . . 10 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢))
45 ralnex 3062 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣))
46 ralnex 3062 . . . . . . . . . . . . . 14 (∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)
4745, 46anbi12i 628 . . . . . . . . . . . . 13 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
48 ioran 985 . . . . . . . . . . . . 13 (¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
4947, 48bitr4i 278 . . . . . . . . . . . 12 ((∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5049ralbii 3082 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
51 ralnex 3062 . . . . . . . . . . 11 (∀𝑢 ∈ (Fmla‘∅) ¬ (∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5250, 51bitri 275 . . . . . . . . . 10 (∀𝑢 ∈ (Fmla‘∅)(∀𝑣 ∈ (Fmla‘∅) ¬ 𝑥 = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ 𝑥 = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5344, 52sylib 218 . . . . . . . . 9 (((𝑗 ∈ ω ∧ 𝑘 ∈ ω) ∧ 𝑥 = (𝑗𝑔𝑘)) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5453ex 412 . . . . . . . 8 ((𝑗 ∈ ω ∧ 𝑘 ∈ ω) → (𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5554rexlimdva 3141 . . . . . . 7 (𝑗 ∈ ω → (∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5655rexlimiv 3134 . . . . . 6 (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) → ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
5756imori 854 . . . . 5 (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
58 ianor 983 . . . . 5 (¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)) ↔ (¬ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∨ ¬ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)))
5957, 58mpbir 231 . . . 4 ¬ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))
6059abf 4381 . . 3 {𝑥 ∣ (∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘) ∧ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢))} = ∅
615, 60eqtri 2758 . 2 ({𝑥 ∣ ∃𝑗 ∈ ω ∃𝑘 ∈ ω 𝑥 = (𝑗𝑔𝑘)} ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
624, 61eqtri 2758 1 ((Fmla‘∅) ∩ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘∅)(∃𝑣 ∈ (Fmla‘∅)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  c0 4308  cop 4607  cfv 6531  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474  𝑔cgoe 35355  𝑔cgna 35356  𝑔cgol 35357  Fmlacfmla 35359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8842  df-goel 35362  df-gona 35363  df-goal 35364  df-sat 35365  df-fmla 35367
This theorem is referenced by:  satffunlem1lem2  35425
  Copyright terms: Public domain W3C validator