![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en3lp | Structured version Visualization version GIF version |
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 44816 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
en3lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | eleq2 2833 | . . . . 5 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅)) | |
3 | 1, 2 | mtbiri 327 | . . . 4 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
4 | tpid3g 4797 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 3, 4 | nsyl 140 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ 𝐴) |
6 | 5 | intn3an3d 1481 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
7 | tpex 7781 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ V | |
8 | zfreg 9664 | . . . 4 ⊢ (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) | |
9 | 7, 8 | mpan 689 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) |
10 | en3lplem2 9682 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | |
11 | 10 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
12 | 11 | necon2bd 2962 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
13 | 12 | rexlimiv 3154 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
14 | 9, 13 | syl 17 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
15 | 6, 14 | pm2.61ine 3031 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ∅c0 4352 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-tp 4653 df-uni 4932 |
This theorem is referenced by: bj-inftyexpidisj 37176 tratrb 44507 tratrbVD 44832 |
Copyright terms: Public domain | W3C validator |