MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lp Structured version   Visualization version   GIF version

Theorem en3lp 9683
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 44816 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
en3lp ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 4360 . . . . 5 ¬ 𝐶 ∈ ∅
2 eleq2 2833 . . . . 5 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
31, 2mtbiri 327 . . . 4 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶})
4 tpid3g 4797 . . . 4 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
53, 4nsyl 140 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶𝐴)
65intn3an3d 1481 . 2 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
7 tpex 7781 . . . 4 {𝐴, 𝐵, 𝐶} ∈ V
8 zfreg 9664 . . . 4 (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
97, 8mpan 689 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
10 en3lplem2 9682 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1110com12 32 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1211necon2bd 2962 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)))
1312rexlimiv 3154 . . 3 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
149, 13syl 17 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
156, 14pm2.61ine 3031 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cin 3975  c0 4352  {ctp 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-tp 4653  df-uni 4932
This theorem is referenced by:  bj-inftyexpidisj  37176  tratrb  44507  tratrbVD  44832
  Copyright terms: Public domain W3C validator