| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3lp | Structured version Visualization version GIF version | ||
| Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 44961 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
| Ref | Expression |
|---|---|
| en3lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
| 2 | eleq2 2822 | . . . . 5 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . . . 4 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 4 | tpid3g 4724 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 5 | 3, 4 | nsyl 140 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ 𝐴) |
| 6 | 5 | intn3an3d 1483 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
| 7 | tpex 7685 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ V | |
| 8 | zfreg 9489 | . . . 4 ⊢ (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) |
| 10 | en3lplem2 9510 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | |
| 11 | 10 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
| 12 | 11 | necon2bd 2945 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
| 13 | 12 | rexlimiv 3127 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
| 14 | 9, 13 | syl 17 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
| 15 | 6, 14 | pm2.61ine 3012 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ∅c0 4282 {ctp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-reg 9485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-tp 4580 df-uni 4859 |
| This theorem is referenced by: bj-inftyexpidisj 37275 tratrb 44653 tratrbVD 44977 |
| Copyright terms: Public domain | W3C validator |