Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en3lp | Structured version Visualization version GIF version |
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 42354 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
en3lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | eleq2 2827 | . . . . 5 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅)) | |
3 | 1, 2 | mtbiri 326 | . . . 4 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
4 | tpid3g 4705 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 3, 4 | nsyl 140 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ 𝐴) |
6 | 5 | intn3an3d 1479 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
7 | tpex 7575 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ V | |
8 | zfreg 9284 | . . . 4 ⊢ (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) | |
9 | 7, 8 | mpan 686 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) |
10 | en3lplem2 9301 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | |
11 | 10 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
12 | 11 | necon2bd 2958 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
13 | 12 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
14 | 9, 13 | syl 17 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
15 | 6, 14 | pm2.61ine 3027 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ∅c0 4253 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 df-uni 4837 |
This theorem is referenced by: bj-inftyexpidisj 35308 tratrb 42045 tratrbVD 42370 |
Copyright terms: Public domain | W3C validator |