Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en3lp | Structured version Visualization version GIF version |
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 42138 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
en3lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4245 | . . . . 5 ⊢ ¬ 𝐶 ∈ ∅ | |
2 | eleq2 2826 | . . . . 5 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅)) | |
3 | 1, 2 | mtbiri 330 | . . . 4 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
4 | tpid3g 4688 | . . . 4 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 3, 4 | nsyl 142 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ 𝐴) |
6 | 5 | intn3an3d 1483 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
7 | tpex 7532 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ V | |
8 | zfreg 9211 | . . . 4 ⊢ (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) | |
9 | 7, 8 | mpan 690 | . . 3 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅) |
10 | en3lplem2 9228 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | |
11 | 10 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
12 | 11 | necon2bd 2956 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
13 | 12 | rexlimiv 3199 | . . 3 ⊢ (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
14 | 9, 13 | syl 17 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) |
15 | 6, 14 | pm2.61ine 3025 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 Vcvv 3408 ∩ cin 3865 ∅c0 4237 {ctp 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-reg 9208 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-sn 4542 df-pr 4544 df-tp 4546 df-uni 4820 |
This theorem is referenced by: bj-inftyexpidisj 35116 tratrb 41829 tratrbVD 42154 |
Copyright terms: Public domain | W3C validator |