![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlimsuc | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
Ref | Expression |
---|---|
nlimsuc | ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6442 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | eloni 6371 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordirr 6379 | . . . . . . . . 9 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
5 | eleq2 2822 | . . . . . . . . 9 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
6 | 5 | notbid 317 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
7 | 4, 6 | syl5ibrcom 246 | . . . . . . 7 ⊢ (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
8 | 1, 7 | mt2d 136 | . . . . . 6 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴) |
9 | 8 | neqned 2947 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ 𝐴) |
10 | onunisuc 6471 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
11 | 9, 10 | neeqtrrd 3015 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ ∪ suc 𝐴) |
12 | 11 | neneqd 2945 | . . 3 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = ∪ suc 𝐴) |
13 | 12 | intn3an3d 1481 | . 2 ⊢ (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) |
14 | dflim2 6418 | . 2 ⊢ (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) | |
15 | 13, 14 | sylnibr 328 | 1 ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∅c0 4321 ∪ cuni 4907 Ord word 6360 Oncon0 6361 Lim wlim 6362 suc csuc 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 |
This theorem is referenced by: nlim1NEW 42178 nlim2NEW 42179 nlim3 42180 nlim4 42181 dfsucon 42259 |
Copyright terms: Public domain | W3C validator |