Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlimsuc Structured version   Visualization version   GIF version

Theorem nlimsuc 43423
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlimsuc (𝐴 ∈ On → ¬ Lim suc 𝐴)

Proof of Theorem nlimsuc
StepHypRef Expression
1 sucidg 6403 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6330 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
3 ordirr 6338 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
5 eleq2 2817 . . . . . . . . 9 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
65notbid 318 . . . . . . . 8 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
74, 6syl5ibrcom 247 . . . . . . 7 (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
81, 7mt2d 136 . . . . . 6 (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴)
98neqned 2932 . . . . 5 (𝐴 ∈ On → suc 𝐴𝐴)
10 onunisuc 6432 . . . . 5 (𝐴 ∈ On → suc 𝐴 = 𝐴)
119, 10neeqtrrd 2999 . . . 4 (𝐴 ∈ On → suc 𝐴 suc 𝐴)
1211neneqd 2930 . . 3 (𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴)
1312intn3an3d 1483 . 2 (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
14 dflim2 6378 . 2 (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
1513, 14sylnibr 329 1 (𝐴 ∈ On → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  c0 4292   cuni 4867  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326
This theorem is referenced by:  nlim1NEW  43424  nlim2NEW  43425  nlim3  43426  nlim4  43427  dfsucon  43505
  Copyright terms: Public domain W3C validator