Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlimsuc | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
Ref | Expression |
---|---|
nlimsuc | ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6368 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | eloni 6298 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordirr 6306 | . . . . . . . . 9 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
5 | eleq2 2825 | . . . . . . . . 9 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
6 | 5 | notbid 317 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
7 | 4, 6 | syl5ibrcom 246 | . . . . . . 7 ⊢ (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
8 | 1, 7 | mt2d 136 | . . . . . 6 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴) |
9 | 8 | neqned 2947 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ 𝐴) |
10 | onunisuc 6396 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
11 | 9, 10 | neeqtrrd 3015 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ ∪ suc 𝐴) |
12 | 11 | neneqd 2945 | . . 3 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = ∪ suc 𝐴) |
13 | 12 | intn3an3d 1480 | . 2 ⊢ (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) |
14 | dflim2 6344 | . 2 ⊢ (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) | |
15 | 13, 14 | sylnibr 328 | 1 ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∅c0 4266 ∪ cuni 4849 Ord word 6287 Oncon0 6288 Lim wlim 6289 suc csuc 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-tr 5204 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 |
This theorem is referenced by: nlim1NEW 41288 nlim2NEW 41289 nlim3 41290 nlim4 41291 dfsucon 41369 |
Copyright terms: Public domain | W3C validator |