| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlimsuc | Structured version Visualization version GIF version | ||
| Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlimsuc | ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg 6440 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
| 2 | eloni 6367 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | ordirr 6375 | . . . . . . . . 9 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
| 5 | eleq2 2824 | . . . . . . . . 9 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 6 | 5 | notbid 318 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 7 | 4, 6 | syl5ibrcom 247 | . . . . . . 7 ⊢ (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
| 8 | 1, 7 | mt2d 136 | . . . . . 6 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴) |
| 9 | 8 | neqned 2940 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ 𝐴) |
| 10 | onunisuc 6469 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
| 11 | 9, 10 | neeqtrrd 3007 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ ∪ suc 𝐴) |
| 12 | 11 | neneqd 2938 | . . 3 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = ∪ suc 𝐴) |
| 13 | 12 | intn3an3d 1483 | . 2 ⊢ (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) |
| 14 | dflim2 6415 | . 2 ⊢ (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) | |
| 15 | 13, 14 | sylnibr 329 | 1 ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4313 ∪ cuni 4888 Ord word 6356 Oncon0 6357 Lim wlim 6358 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 |
| This theorem is referenced by: nlim1NEW 43433 nlim2NEW 43434 nlim3 43435 nlim4 43436 dfsucon 43514 |
| Copyright terms: Public domain | W3C validator |