![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlimsuc | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
Ref | Expression |
---|---|
nlimsuc | ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucidg 6439 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) | |
2 | eloni 6368 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordirr 6376 | . . . . . . . . 9 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ On → ¬ 𝐴 ∈ 𝐴) |
5 | eleq2 2816 | . . . . . . . . 9 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
6 | 5 | notbid 318 | . . . . . . . 8 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
7 | 4, 6 | syl5ibrcom 246 | . . . . . . 7 ⊢ (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
8 | 1, 7 | mt2d 136 | . . . . . 6 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴) |
9 | 8 | neqned 2941 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ 𝐴) |
10 | onunisuc 6468 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) | |
11 | 9, 10 | neeqtrrd 3009 | . . . 4 ⊢ (𝐴 ∈ On → suc 𝐴 ≠ ∪ suc 𝐴) |
12 | 11 | neneqd 2939 | . . 3 ⊢ (𝐴 ∈ On → ¬ suc 𝐴 = ∪ suc 𝐴) |
13 | 12 | intn3an3d 1477 | . 2 ⊢ (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) |
14 | dflim2 6415 | . 2 ⊢ (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) | |
15 | 13, 14 | sylnibr 329 | 1 ⊢ (𝐴 ∈ On → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∅c0 4317 ∪ cuni 4902 Ord word 6357 Oncon0 6358 Lim wlim 6359 suc csuc 6360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 |
This theorem is referenced by: nlim1NEW 42766 nlim2NEW 42767 nlim3 42768 nlim4 42769 dfsucon 42847 |
Copyright terms: Public domain | W3C validator |