Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlimsuc Structured version   Visualization version   GIF version

Theorem nlimsuc 43403
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlimsuc (𝐴 ∈ On → ¬ Lim suc 𝐴)

Proof of Theorem nlimsuc
StepHypRef Expression
1 sucidg 6476 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6405 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
3 ordirr 6413 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
5 eleq2 2833 . . . . . . . . 9 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
65notbid 318 . . . . . . . 8 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
74, 6syl5ibrcom 247 . . . . . . 7 (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
81, 7mt2d 136 . . . . . 6 (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴)
98neqned 2953 . . . . 5 (𝐴 ∈ On → suc 𝐴𝐴)
10 onunisuc 6505 . . . . 5 (𝐴 ∈ On → suc 𝐴 = 𝐴)
119, 10neeqtrrd 3021 . . . 4 (𝐴 ∈ On → suc 𝐴 suc 𝐴)
1211neneqd 2951 . . 3 (𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴)
1312intn3an3d 1481 . 2 (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
14 dflim2 6452 . 2 (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
1513, 14sylnibr 329 1 (𝐴 ∈ On → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1537  wcel 2108  c0 4352   cuni 4931  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by:  nlim1NEW  43404  nlim2NEW  43405  nlim3  43406  nlim4  43407  dfsucon  43485
  Copyright terms: Public domain W3C validator