Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlimsuc Structured version   Visualization version   GIF version

Theorem nlimsuc 42765
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlimsuc (𝐴 ∈ On → ¬ Lim suc 𝐴)

Proof of Theorem nlimsuc
StepHypRef Expression
1 sucidg 6439 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6368 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
3 ordirr 6376 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
5 eleq2 2816 . . . . . . . . 9 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
65notbid 318 . . . . . . . 8 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
74, 6syl5ibrcom 246 . . . . . . 7 (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
81, 7mt2d 136 . . . . . 6 (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴)
98neqned 2941 . . . . 5 (𝐴 ∈ On → suc 𝐴𝐴)
10 onunisuc 6468 . . . . 5 (𝐴 ∈ On → suc 𝐴 = 𝐴)
119, 10neeqtrrd 3009 . . . 4 (𝐴 ∈ On → suc 𝐴 suc 𝐴)
1211neneqd 2939 . . 3 (𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴)
1312intn3an3d 1477 . 2 (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
14 dflim2 6415 . 2 (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
1513, 14sylnibr 329 1 (𝐴 ∈ On → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1533  wcel 2098  c0 4317   cuni 4902  Ord word 6357  Oncon0 6358  Lim wlim 6359  suc csuc 6360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364
This theorem is referenced by:  nlim1NEW  42766  nlim2NEW  42767  nlim3  42768  nlim4  42769  dfsucon  42847
  Copyright terms: Public domain W3C validator