Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlimsuc Structured version   Visualization version   GIF version

Theorem nlimsuc 41287
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlimsuc (𝐴 ∈ On → ¬ Lim suc 𝐴)

Proof of Theorem nlimsuc
StepHypRef Expression
1 sucidg 6368 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6298 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
3 ordirr 6306 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
5 eleq2 2825 . . . . . . . . 9 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
65notbid 317 . . . . . . . 8 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
74, 6syl5ibrcom 246 . . . . . . 7 (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
81, 7mt2d 136 . . . . . 6 (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴)
98neqned 2947 . . . . 5 (𝐴 ∈ On → suc 𝐴𝐴)
10 onunisuc 6396 . . . . 5 (𝐴 ∈ On → suc 𝐴 = 𝐴)
119, 10neeqtrrd 3015 . . . 4 (𝐴 ∈ On → suc 𝐴 suc 𝐴)
1211neneqd 2945 . . 3 (𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴)
1312intn3an3d 1480 . 2 (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
14 dflim2 6344 . 2 (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
1513, 14sylnibr 328 1 (𝐴 ∈ On → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2105  c0 4266   cuni 4849  Ord word 6287  Oncon0 6288  Lim wlim 6289  suc csuc 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-tr 5204  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294
This theorem is referenced by:  nlim1NEW  41288  nlim2NEW  41289  nlim3  41290  nlim4  41291  dfsucon  41369
  Copyright terms: Public domain W3C validator