Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlimsuc Structured version   Visualization version   GIF version

Theorem nlimsuc 43533
Description: A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlimsuc (𝐴 ∈ On → ¬ Lim suc 𝐴)

Proof of Theorem nlimsuc
StepHypRef Expression
1 sucidg 6389 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2 eloni 6316 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
3 ordirr 6324 . . . . . . . . 9 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ On → ¬ 𝐴𝐴)
5 eleq2 2820 . . . . . . . . 9 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
65notbid 318 . . . . . . . 8 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
74, 6syl5ibrcom 247 . . . . . . 7 (𝐴 ∈ On → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
81, 7mt2d 136 . . . . . 6 (𝐴 ∈ On → ¬ suc 𝐴 = 𝐴)
98neqned 2935 . . . . 5 (𝐴 ∈ On → suc 𝐴𝐴)
10 onunisuc 6418 . . . . 5 (𝐴 ∈ On → suc 𝐴 = 𝐴)
119, 10neeqtrrd 3002 . . . 4 (𝐴 ∈ On → suc 𝐴 suc 𝐴)
1211neneqd 2933 . . 3 (𝐴 ∈ On → ¬ suc 𝐴 = suc 𝐴)
1312intn3an3d 1483 . 2 (𝐴 ∈ On → ¬ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
14 dflim2 6364 . 2 (Lim suc 𝐴 ↔ (Ord suc 𝐴 ∧ ∅ ∈ suc 𝐴 ∧ suc 𝐴 = suc 𝐴))
1513, 14sylnibr 329 1 (𝐴 ∈ On → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1541  wcel 2111  c0 4280   cuni 4856  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312
This theorem is referenced by:  nlim1NEW  43534  nlim2NEW  43535  nlim3  43536  nlim4  43537  dfsucon  43615
  Copyright terms: Public domain W3C validator