MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatalpha Structured version   Visualization version   GIF version

Theorem ccatalpha 14115
Description: A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.)
Assertion
Ref Expression
ccatalpha ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))

Proof of Theorem ccatalpha
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccatfval 14093 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))
21eleq1d 2815 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆))
3 wrdf 14039 . . . 4 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆)
4 funmpt 6396 . . . . . . . . 9 Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
5 fzofi 13512 . . . . . . . . . . 11 (0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin
6 mptfi 8953 . . . . . . . . . . 11 ((0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin)
75, 6ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin
8 hashfun 13969 . . . . . . . . . 10 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
97, 8mp1i 13 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
104, 9mpbii 236 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))
11 dmmptg 6085 . . . . . . . . . . 11 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V → dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
12 fvex 6708 . . . . . . . . . . . . 13 (𝐴𝑥) ∈ V
13 fvex 6708 . . . . . . . . . . . . 13 (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V
1412, 13ifex 4475 . . . . . . . . . . . 12 if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V
1514a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V)
1611, 15mprg 3065 . . . . . . . . . 10 dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵)))
1716fveq2i 6698 . . . . . . . . 9 (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘(0..^((♯‘𝐴) + (♯‘𝐵))))
18 lencl 14053 . . . . . . . . . . 11 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℕ0)
19 lencl 14053 . . . . . . . . . . 11 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℕ0)
20 nn0addcl 12090 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
2118, 19, 20syl2an 599 . . . . . . . . . 10 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
22 hashfzo0 13962 . . . . . . . . . 10 (((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0 → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2321, 22syl 17 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2417, 23syl5eq 2783 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2510, 24eqtrd 2771 . . . . . . 7 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2625oveq2d 7207 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
2726feq2d 6509 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆))
28 eqid 2736 . . . . . . 7 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
2928fmpt 6905 . . . . . 6 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆)
30 simpl 486 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐴 ∈ Word V)
31 nn0cn 12065 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℂ)
32 nn0cn 12065 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
33 addcom 10983 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
3431, 32, 33syl2an 599 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
35 nn0z 12165 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
3635anim1ci 619 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ))
37 nn0pzuz 12466 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3934, 38eqeltrd 2831 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
4018, 19, 39syl2an 599 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
41 fzoss2 13235 . . . . . . . . . . . . . . 15 (((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4342sselda 3887 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → 𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
44 eleq1 2818 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ 𝑦 ∈ (0..^(♯‘𝐴))))
45 fveq2 6695 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
46 fvoveq1 7214 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘(𝑦 − (♯‘𝐴))))
4744, 45, 46ifbieq12d 4453 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))))
4847eleq1d 2815 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
4948rspcv 3522 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
5043, 49syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
51 iftrue 4431 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^(♯‘𝐴)) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5251adantl 485 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5352eleq1d 2815 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐴𝑦) ∈ 𝑆))
5450, 53sylibd 242 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴𝑦) ∈ 𝑆))
5554impancom 455 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐴)) → (𝐴𝑦) ∈ 𝑆))
5655ralrimiv 3094 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆)
57 iswrdsymb 14051 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
5830, 56, 57syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
59 simpr 488 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐵 ∈ Word V)
60 simpr 488 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 𝑦 ∈ (0..^(♯‘𝐵)))
6118adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℕ0)
6261adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℕ0)
63 elincfzoext 13265 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (♯‘𝐴) ∈ ℕ0) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6460, 62, 63syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6518nn0cnd 12117 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℂ)
6619nn0cnd 12117 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℂ)
6765, 66, 33syl2an 599 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
6867oveq2d 7207 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^((♯‘𝐵) + (♯‘𝐴))))
6968eleq2d 2816 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7069adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7164, 70mpbird 260 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
72 eleq1 2818 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴))))
73 fveq2 6695 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐴𝑥) = (𝐴‘(𝑦 + (♯‘𝐴))))
74 fvoveq1 7214 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
7572, 73, 74ifbieq12d 4453 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + (♯‘𝐴)) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))))
7675eleq1d 2815 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + (♯‘𝐴)) → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7776rspcv 3522 . . . . . . . . . . . . 13 ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7871, 77syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7918nn0red 12116 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℝ)
8079adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℝ)
8180adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℝ)
82 elfzoelz 13208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℤ)
8382zred 12247 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℝ)
8483adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → 𝑦 ∈ ℝ)
8580adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (♯‘𝐴) ∈ ℝ)
8684, 85readdcld 10827 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
8786ancoms 462 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
88 elfzole1 13216 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^(♯‘𝐵)) → 0 ≤ 𝑦)
8988adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 0 ≤ 𝑦)
90 addge02 11308 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9180, 83, 90syl2an 599 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9289, 91mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴)))
9381, 87, 92lensymd 10948 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) < (♯‘𝐴))
9493intn3an3d 1483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
95 elfzo0 13248 . . . . . . . . . . . . . . . 16 ((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)) ↔ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
9694, 95sylnibr 332 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)))
9796iffalsed 4436 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
9897eleq1d 2815 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆))
9982zcnd 12248 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℂ)
10065adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℂ)
101 pncan 11049 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ (♯‘𝐴) ∈ ℂ) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
10299, 100, 101syl2anr 600 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
103102fveq2d 6699 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) = (𝐵𝑦))
104103eleq1d 2815 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 ↔ (𝐵𝑦) ∈ 𝑆))
105104biimpd 232 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10698, 105sylbid 243 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10778, 106syld 47 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
108107impancom 455 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐵)) → (𝐵𝑦) ∈ 𝑆))
109108ralrimiv 3094 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆)
110 iswrdsymb 14051 . . . . . . . . 9 ((𝐵 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11159, 109, 110syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11258, 111jca 515 . . . . . . 7 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆))
113112ex 416 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11429, 113syl5bir 246 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11527, 114sylbid 243 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1163, 115syl5 34 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1172, 116sylbid 243 . 2 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
118 ccatcl 14094 . 2 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆)
119117, 118impbid1 228 1 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  wss 3853  ifcif 4425   class class class wbr 5039  cmpt 5120  dom cdm 5536  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7191  Fincfn 8604  cc 10692  cr 10693  0cc0 10694   + caddc 10697   < clt 10832  cle 10833  cmin 11027  cn 11795  0cn0 12055  cz 12141  cuz 12403  ..^cfzo 13203  chash 13861  Word cword 14034   ++ cconcat 14090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-concat 14091
This theorem is referenced by:  ccatrcl1  14116  ccats1alpha  14141  clwwlkwwlksb  28091
  Copyright terms: Public domain W3C validator