MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatalpha Structured version   Visualization version   GIF version

Theorem ccatalpha 14498
Description: A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.)
Assertion
Ref Expression
ccatalpha ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))

Proof of Theorem ccatalpha
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccatfval 14477 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))
21eleq1d 2816 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆))
3 wrdf 14422 . . . 4 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆)
4 funmpt 6519 . . . . . . . . 9 Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
5 fzofi 13878 . . . . . . . . . . 11 (0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin
6 mptfi 9235 . . . . . . . . . . 11 ((0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin)
75, 6ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin
8 hashfun 14341 . . . . . . . . . 10 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
97, 8mp1i 13 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
104, 9mpbii 233 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))
11 dmmptg 6189 . . . . . . . . . . 11 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V → dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
12 fvex 6835 . . . . . . . . . . . . 13 (𝐴𝑥) ∈ V
13 fvex 6835 . . . . . . . . . . . . 13 (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V
1412, 13ifex 4526 . . . . . . . . . . . 12 if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V
1514a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V)
1611, 15mprg 3053 . . . . . . . . . 10 dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵)))
1716fveq2i 6825 . . . . . . . . 9 (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘(0..^((♯‘𝐴) + (♯‘𝐵))))
18 lencl 14437 . . . . . . . . . . 11 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℕ0)
19 lencl 14437 . . . . . . . . . . 11 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℕ0)
20 nn0addcl 12413 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
2118, 19, 20syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
22 hashfzo0 14334 . . . . . . . . . 10 (((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0 → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2321, 22syl 17 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2417, 23eqtrid 2778 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2510, 24eqtrd 2766 . . . . . . 7 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2625oveq2d 7362 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
2726feq2d 6635 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆))
28 eqid 2731 . . . . . . 7 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
2928fmpt 7043 . . . . . 6 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆)
30 simpl 482 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐴 ∈ Word V)
31 nn0cn 12388 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℂ)
32 nn0cn 12388 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
33 addcom 11296 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
3431, 32, 33syl2an 596 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
35 nn0z 12490 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
3635anim1ci 616 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ))
37 nn0pzuz 12800 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3934, 38eqeltrd 2831 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
4018, 19, 39syl2an 596 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
41 fzoss2 13584 . . . . . . . . . . . . . . 15 (((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4342sselda 3934 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → 𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
44 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ 𝑦 ∈ (0..^(♯‘𝐴))))
45 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
46 fvoveq1 7369 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘(𝑦 − (♯‘𝐴))))
4744, 45, 46ifbieq12d 4504 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))))
4847eleq1d 2816 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
4948rspcv 3573 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
5043, 49syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
51 iftrue 4481 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^(♯‘𝐴)) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5251adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5352eleq1d 2816 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐴𝑦) ∈ 𝑆))
5450, 53sylibd 239 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴𝑦) ∈ 𝑆))
5554impancom 451 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐴)) → (𝐴𝑦) ∈ 𝑆))
5655ralrimiv 3123 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆)
57 iswrdsymb 14435 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
5830, 56, 57syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
59 simpr 484 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐵 ∈ Word V)
60 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 𝑦 ∈ (0..^(♯‘𝐵)))
6118adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℕ0)
6261adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℕ0)
63 elincfzoext 13620 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (♯‘𝐴) ∈ ℕ0) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6460, 62, 63syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6518nn0cnd 12441 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℂ)
6619nn0cnd 12441 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℂ)
6765, 66, 33syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
6867oveq2d 7362 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^((♯‘𝐵) + (♯‘𝐴))))
6968eleq2d 2817 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7069adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7164, 70mpbird 257 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
72 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴))))
73 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐴𝑥) = (𝐴‘(𝑦 + (♯‘𝐴))))
74 fvoveq1 7369 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
7572, 73, 74ifbieq12d 4504 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + (♯‘𝐴)) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))))
7675eleq1d 2816 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + (♯‘𝐴)) → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7776rspcv 3573 . . . . . . . . . . . . 13 ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7871, 77syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7918nn0red 12440 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℝ)
82 elfzoelz 13556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℤ)
8382zred 12574 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℝ)
8483adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → 𝑦 ∈ ℝ)
8580adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (♯‘𝐴) ∈ ℝ)
8684, 85readdcld 11138 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
8786ancoms 458 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
88 elfzole1 13564 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^(♯‘𝐵)) → 0 ≤ 𝑦)
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 0 ≤ 𝑦)
90 addge02 11625 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9180, 83, 90syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9289, 91mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴)))
9381, 87, 92lensymd 11261 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) < (♯‘𝐴))
9493intn3an3d 1483 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
95 elfzo0 13597 . . . . . . . . . . . . . . . 16 ((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)) ↔ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
9694, 95sylnibr 329 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)))
9796iffalsed 4486 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
9897eleq1d 2816 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆))
9982zcnd 12575 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℂ)
10065adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℂ)
101 pncan 11363 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ (♯‘𝐴) ∈ ℂ) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
10299, 100, 101syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
103102fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) = (𝐵𝑦))
104103eleq1d 2816 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 ↔ (𝐵𝑦) ∈ 𝑆))
105104biimpd 229 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10698, 105sylbid 240 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10778, 106syld 47 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
108107impancom 451 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐵)) → (𝐵𝑦) ∈ 𝑆))
109108ralrimiv 3123 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆)
110 iswrdsymb 14435 . . . . . . . . 9 ((𝐵 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11159, 109, 110syl2an2r 685 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11258, 111jca 511 . . . . . . 7 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆))
113112ex 412 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11429, 113biimtrrid 243 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11527, 114sylbid 240 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1163, 115syl5 34 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1172, 116sylbid 240 . 2 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
118 ccatcl 14478 . 2 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆)
119117, 118impbid1 225 1 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  ifcif 4475   class class class wbr 5091  cmpt 5172  dom cdm 5616  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  cr 11002  0cc0 11003   + caddc 11006   < clt 11143  cle 11144  cmin 11341  cn 12122  0cn0 12378  cz 12465  cuz 12729  ..^cfzo 13551  chash 14234  Word cword 14417   ++ cconcat 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475
This theorem is referenced by:  ccatrcl1  14499  ccats1alpha  14524  clwwlkwwlksb  30029
  Copyright terms: Public domain W3C validator