MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatalpha Structured version   Visualization version   GIF version

Theorem ccatalpha 14543
Description: A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.)
Assertion
Ref Expression
ccatalpha ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))

Proof of Theorem ccatalpha
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ccatfval 14523 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))
21eleq1d 2819 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆))
3 wrdf 14469 . . . 4 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆)
4 funmpt 6587 . . . . . . . . 9 Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
5 fzofi 13939 . . . . . . . . . . 11 (0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin
6 mptfi 9351 . . . . . . . . . . 11 ((0..^((♯‘𝐴) + (♯‘𝐵))) ∈ Fin → (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin)
75, 6ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin
8 hashfun 14397 . . . . . . . . . 10 ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Fin → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
97, 8mp1i 13 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (Fun (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ↔ (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))))
104, 9mpbii 232 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))
11 dmmptg 6242 . . . . . . . . . . 11 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V → dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
12 fvex 6905 . . . . . . . . . . . . 13 (𝐴𝑥) ∈ V
13 fvex 6905 . . . . . . . . . . . . 13 (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V
1412, 13ifex 4579 . . . . . . . . . . . 12 if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V
1514a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V)
1611, 15mprg 3068 . . . . . . . . . 10 dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (0..^((♯‘𝐴) + (♯‘𝐵)))
1716fveq2i 6895 . . . . . . . . 9 (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = (♯‘(0..^((♯‘𝐴) + (♯‘𝐵))))
18 lencl 14483 . . . . . . . . . . 11 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℕ0)
19 lencl 14483 . . . . . . . . . . 11 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℕ0)
20 nn0addcl 12507 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
2118, 19, 20syl2an 597 . . . . . . . . . 10 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0)
22 hashfzo0 14390 . . . . . . . . . 10 (((♯‘𝐴) + (♯‘𝐵)) ∈ ℕ0 → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2321, 22syl 17 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(0..^((♯‘𝐴) + (♯‘𝐵)))) = ((♯‘𝐴) + (♯‘𝐵)))
2417, 23eqtrid 2785 . . . . . . . 8 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘dom (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2510, 24eqtrd 2773 . . . . . . 7 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) = ((♯‘𝐴) + (♯‘𝐵)))
2625oveq2d 7425 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))) = (0..^((♯‘𝐴) + (♯‘𝐵))))
2726feq2d 6704 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆))
28 eqid 2733 . . . . . . 7 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
2928fmpt 7110 . . . . . 6 (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆)
30 simpl 484 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐴 ∈ Word V)
31 nn0cn 12482 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℂ)
32 nn0cn 12482 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
33 addcom 11400 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
3431, 32, 33syl2an 597 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
35 nn0z 12583 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
3635anim1ci 617 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ))
37 nn0pzuz 12889 . . . . . . . . . . . . . . . . . 18 (((♯‘𝐵) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℤ) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3836, 37syl 17 . . . . . . . . . . . . . . . . 17 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) + (♯‘𝐴)) ∈ (ℤ‘(♯‘𝐴)))
3934, 38eqeltrd 2834 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
4018, 19, 39syl2an 597 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)))
41 fzoss2 13660 . . . . . . . . . . . . . . 15 (((♯‘𝐴) + (♯‘𝐵)) ∈ (ℤ‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4240, 41syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^(♯‘𝐴)) ⊆ (0..^((♯‘𝐴) + (♯‘𝐵))))
4342sselda 3983 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → 𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
44 eleq1 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ 𝑦 ∈ (0..^(♯‘𝐴))))
45 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
46 fvoveq1 7432 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘(𝑦 − (♯‘𝐴))))
4744, 45, 46ifbieq12d 4557 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))))
4847eleq1d 2819 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
4948rspcv 3609 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
5043, 49syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆))
51 iftrue 4535 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^(♯‘𝐴)) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5251adantl 483 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) = (𝐴𝑦))
5352eleq1d 2819 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (if(𝑦 ∈ (0..^(♯‘𝐴)), (𝐴𝑦), (𝐵‘(𝑦 − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐴𝑦) ∈ 𝑆))
5450, 53sylibd 238 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐴))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴𝑦) ∈ 𝑆))
5554impancom 453 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐴)) → (𝐴𝑦) ∈ 𝑆))
5655ralrimiv 3146 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆)
57 iswrdsymb 14481 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐴))(𝐴𝑦) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
5830, 56, 57syl2an2r 684 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐴 ∈ Word 𝑆)
59 simpr 486 . . . . . . . . 9 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → 𝐵 ∈ Word V)
60 simpr 486 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 𝑦 ∈ (0..^(♯‘𝐵)))
6118adantr 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℕ0)
6261adantr 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℕ0)
63 elincfzoext 13690 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (♯‘𝐴) ∈ ℕ0) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6460, 62, 63syl2anc 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴))))
6518nn0cnd 12534 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℂ)
6619nn0cnd 12534 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Word V → (♯‘𝐵) ∈ ℂ)
6765, 66, 33syl2an 597 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐵) + (♯‘𝐴)))
6867oveq2d 7425 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (0..^((♯‘𝐴) + (♯‘𝐵))) = (0..^((♯‘𝐵) + (♯‘𝐴))))
6968eleq2d 2820 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7069adantr 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐵) + (♯‘𝐴)))))
7164, 70mpbird 257 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))))
72 eleq1 2822 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝑥 ∈ (0..^(♯‘𝐴)) ↔ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴))))
73 fveq2 6892 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐴𝑥) = (𝐴‘(𝑦 + (♯‘𝐴))))
74 fvoveq1 7432 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + (♯‘𝐴)) → (𝐵‘(𝑥 − (♯‘𝐴))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
7572, 73, 74ifbieq12d 4557 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + (♯‘𝐴)) → if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) = if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))))
7675eleq1d 2819 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + (♯‘𝐴)) → (if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 ↔ if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7776rspcv 3609 . . . . . . . . . . . . 13 ((𝑦 + (♯‘𝐴)) ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7871, 77syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆))
7918nn0red 12533 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word V → (♯‘𝐴) ∈ ℝ)
8079adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℝ)
8180adantr 482 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ∈ ℝ)
82 elfzoelz 13632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℤ)
8382zred 12666 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℝ)
8483adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → 𝑦 ∈ ℝ)
8580adantl 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (♯‘𝐴) ∈ ℝ)
8684, 85readdcld 11243 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (0..^(♯‘𝐵)) ∧ (𝐴 ∈ Word V ∧ 𝐵 ∈ Word V)) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
8786ancoms 460 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝑦 + (♯‘𝐴)) ∈ ℝ)
88 elfzole1 13640 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^(♯‘𝐵)) → 0 ≤ 𝑦)
8988adantl 483 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → 0 ≤ 𝑦)
90 addge02 11725 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9180, 83, 90syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (0 ≤ 𝑦 ↔ (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴))))
9289, 91mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (♯‘𝐴) ≤ (𝑦 + (♯‘𝐴)))
9381, 87, 92lensymd 11365 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) < (♯‘𝐴))
9493intn3an3d 1482 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
95 elfzo0 13673 . . . . . . . . . . . . . . . 16 ((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)) ↔ ((𝑦 + (♯‘𝐴)) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑦 + (♯‘𝐴)) < (♯‘𝐴)))
9694, 95sylnibr 329 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ¬ (𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)))
9796iffalsed 4540 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) = (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))))
9897eleq1d 2819 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 ↔ (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆))
9982zcnd 12667 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0..^(♯‘𝐵)) → 𝑦 ∈ ℂ)
10065adantr 482 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (♯‘𝐴) ∈ ℂ)
101 pncan 11466 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ (♯‘𝐴) ∈ ℂ) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
10299, 100, 101syl2anr 598 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝑦 + (♯‘𝐴)) − (♯‘𝐴)) = 𝑦)
103102fveq2d 6896 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) = (𝐵𝑦))
104103eleq1d 2819 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 ↔ (𝐵𝑦) ∈ 𝑆))
105104biimpd 228 . . . . . . . . . . . . 13 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → ((𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10698, 105sylbid 239 . . . . . . . . . . . 12 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (if((𝑦 + (♯‘𝐴)) ∈ (0..^(♯‘𝐴)), (𝐴‘(𝑦 + (♯‘𝐴))), (𝐵‘((𝑦 + (♯‘𝐴)) − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
10778, 106syld 47 . . . . . . . . . . 11 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ 𝑦 ∈ (0..^(♯‘𝐵))) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐵𝑦) ∈ 𝑆))
108107impancom 453 . . . . . . . . . 10 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝑦 ∈ (0..^(♯‘𝐵)) → (𝐵𝑦) ∈ 𝑆))
109108ralrimiv 3146 . . . . . . . . 9 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆)
110 iswrdsymb 14481 . . . . . . . . 9 ((𝐵 ∈ Word V ∧ ∀𝑦 ∈ (0..^(♯‘𝐵))(𝐵𝑦) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11159, 109, 110syl2an2r 684 . . . . . . . 8 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → 𝐵 ∈ Word 𝑆)
11258, 111jca 513 . . . . . . 7 (((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) ∧ ∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆) → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆))
113112ex 414 . . . . . 6 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → (∀𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵)))if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11429, 113biimtrrid 242 . . . . 5 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^((♯‘𝐴) + (♯‘𝐵)))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
11527, 114sylbid 239 . . . 4 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))):(0..^(♯‘(𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))))⟶𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1163, 115syl5 34 . . 3 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
1172, 116sylbid 239 . 2 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
118 ccatcl 14524 . 2 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆)
119117, 118impbid1 224 1 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V) → ((𝐴 ++ 𝐵) ∈ Word 𝑆 ↔ (𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3949  ifcif 4529   class class class wbr 5149  cmpt 5232  dom cdm 5677  Fun wfun 6538  wf 6540  cfv 6544  (class class class)co 7409  Fincfn 8939  cc 11108  cr 11109  0cc0 11110   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cn 12212  0cn0 12472  cz 12558  cuz 12822  ..^cfzo 13627  chash 14290  Word cword 14464   ++ cconcat 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521
This theorem is referenced by:  ccatrcl1  14544  ccats1alpha  14569  clwwlkwwlksb  29307
  Copyright terms: Public domain W3C validator