MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Visualization version   GIF version

Theorem winainflem 10584
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem winainflem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7824 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧))
2 simp1 1136 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
32necon2bi 2958 . . . . 5 (𝐴 = ∅ → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4 vex 3440 . . . . . . . . . . . 12 𝑧 ∈ V
54sucid 6390 . . . . . . . . . . 11 𝑧 ∈ suc 𝑧
6 eleq2 2820 . . . . . . . . . . 11 (𝐴 = suc 𝑧 → (𝑧𝐴𝑧 ∈ suc 𝑧))
75, 6mpbiri 258 . . . . . . . . . 10 (𝐴 = suc 𝑧𝑧𝐴)
87adantl 481 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝑧𝐴)
9 breq1 5092 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
109rexbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑧𝑦))
11 breq2 5093 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
1211cbvrexvw 3211 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧𝑦 ↔ ∃𝑤𝐴 𝑧𝑤)
1310, 12bitrdi 287 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑤𝐴 𝑧𝑤))
1413rspcv 3568 . . . . . . . . 9 (𝑧𝐴 → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
158, 14syl 17 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
16 eleq2 2820 . . . . . . . . . . . . . . 15 (𝐴 = suc 𝑧 → (𝑤𝐴𝑤 ∈ suc 𝑧))
1716biimpa 476 . . . . . . . . . . . . . 14 ((𝐴 = suc 𝑧𝑤𝐴) → 𝑤 ∈ suc 𝑧)
18173ad2antl2 1187 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ suc 𝑧)
19 nnon 7802 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → 𝑧 ∈ On)
20 onsuc 7743 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → suc 𝑧 ∈ On)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → suc 𝑧 ∈ On)
22 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝐴 = suc 𝑧 → (𝐴 ∈ On ↔ suc 𝑧 ∈ On))
2322biimparc 479 . . . . . . . . . . . . . . . . 17 ((suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
2421, 23sylan 580 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
25243adant3 1132 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
26 onelon 6331 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
2725, 26sylan 580 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ On)
28 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ ω)
2928, 19syl 17 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ On)
30 onsssuc 6398 . . . . . . . . . . . . . 14 ((𝑤 ∈ On ∧ 𝑧 ∈ On) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3127, 29, 30syl2anc 584 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3218, 31mpbird 257 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
33 ssdomg 8922 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑤𝑧𝑤𝑧))
344, 32, 33mpsyl 68 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
35 domnsym 9016 . . . . . . . . . . 11 (𝑤𝑧 → ¬ 𝑧𝑤)
3634, 35syl 17 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → ¬ 𝑧𝑤)
3736nrexdv 3127 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ ∃𝑤𝐴 𝑧𝑤)
38373expia 1121 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃𝑤𝐴 𝑧𝑤))
3915, 38pm2.65d 196 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
4039intn3an3d 1483 . . . . . 6 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4140rexlimiva 3125 . . . . 5 (∃𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
423, 41jaoi 857 . . . 4 ((𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
431, 42syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4443con2i 139 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ 𝐴 ∈ ω)
45 ordom 7806 . . 3 Ord ω
46 eloni 6316 . . . 4 (𝐴 ∈ On → Ord 𝐴)
47463ad2ant2 1134 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → Ord 𝐴)
48 ordtri1 6339 . . 3 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
4945, 47, 48sylancr 587 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
5044, 49mpbird 257 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  Ord word 6305  Oncon0 6306  suc csuc 6308  ωcom 7796  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-om 7797  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  winainf  10585  tskcard  10672  gruina  10709
  Copyright terms: Public domain W3C validator