MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Visualization version   GIF version

Theorem winainflem 10690
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem winainflem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7888 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧))
2 simp1 1134 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
32necon2bi 2969 . . . . 5 (𝐴 = ∅ → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4 vex 3476 . . . . . . . . . . . 12 𝑧 ∈ V
54sucid 6445 . . . . . . . . . . 11 𝑧 ∈ suc 𝑧
6 eleq2 2820 . . . . . . . . . . 11 (𝐴 = suc 𝑧 → (𝑧𝐴𝑧 ∈ suc 𝑧))
75, 6mpbiri 257 . . . . . . . . . 10 (𝐴 = suc 𝑧𝑧𝐴)
87adantl 480 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝑧𝐴)
9 breq1 5150 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
109rexbidv 3176 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑧𝑦))
11 breq2 5151 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
1211cbvrexvw 3233 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧𝑦 ↔ ∃𝑤𝐴 𝑧𝑤)
1310, 12bitrdi 286 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑤𝐴 𝑧𝑤))
1413rspcv 3607 . . . . . . . . 9 (𝑧𝐴 → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
158, 14syl 17 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
16 eleq2 2820 . . . . . . . . . . . . . . 15 (𝐴 = suc 𝑧 → (𝑤𝐴𝑤 ∈ suc 𝑧))
1716biimpa 475 . . . . . . . . . . . . . 14 ((𝐴 = suc 𝑧𝑤𝐴) → 𝑤 ∈ suc 𝑧)
18173ad2antl2 1184 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ suc 𝑧)
19 nnon 7863 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → 𝑧 ∈ On)
20 onsuc 7801 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → suc 𝑧 ∈ On)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → suc 𝑧 ∈ On)
22 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝐴 = suc 𝑧 → (𝐴 ∈ On ↔ suc 𝑧 ∈ On))
2322biimparc 478 . . . . . . . . . . . . . . . . 17 ((suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
2421, 23sylan 578 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
25243adant3 1130 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
26 onelon 6388 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
2725, 26sylan 578 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ On)
28 simpl1 1189 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ ω)
2928, 19syl 17 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ On)
30 onsssuc 6453 . . . . . . . . . . . . . 14 ((𝑤 ∈ On ∧ 𝑧 ∈ On) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3127, 29, 30syl2anc 582 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3218, 31mpbird 256 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
33 ssdomg 8998 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑤𝑧𝑤𝑧))
344, 32, 33mpsyl 68 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
35 domnsym 9101 . . . . . . . . . . 11 (𝑤𝑧 → ¬ 𝑧𝑤)
3634, 35syl 17 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → ¬ 𝑧𝑤)
3736nrexdv 3147 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ ∃𝑤𝐴 𝑧𝑤)
38373expia 1119 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃𝑤𝐴 𝑧𝑤))
3915, 38pm2.65d 195 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
4039intn3an3d 1479 . . . . . 6 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4140rexlimiva 3145 . . . . 5 (∃𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
423, 41jaoi 853 . . . 4 ((𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
431, 42syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4443con2i 139 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ 𝐴 ∈ ω)
45 ordom 7867 . . 3 Ord ω
46 eloni 6373 . . . 4 (𝐴 ∈ On → Ord 𝐴)
47463ad2ant2 1132 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → Ord 𝐴)
48 ordtri1 6396 . . 3 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
4945, 47, 48sylancr 585 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
5044, 49mpbird 256 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  Vcvv 3472  wss 3947  c0 4321   class class class wbr 5147  Ord word 6362  Oncon0 6363  suc csuc 6365  ωcom 7857  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-om 7858  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944
This theorem is referenced by:  winainf  10691  tskcard  10778  gruina  10815
  Copyright terms: Public domain W3C validator