MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Visualization version   GIF version

Theorem winainflem 10104
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem winainflem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7586 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧))
2 simp1 1133 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
32necon2bi 3017 . . . . 5 (𝐴 = ∅ → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4 vex 3444 . . . . . . . . . . . 12 𝑧 ∈ V
54sucid 6238 . . . . . . . . . . 11 𝑧 ∈ suc 𝑧
6 eleq2 2878 . . . . . . . . . . 11 (𝐴 = suc 𝑧 → (𝑧𝐴𝑧 ∈ suc 𝑧))
75, 6mpbiri 261 . . . . . . . . . 10 (𝐴 = suc 𝑧𝑧𝐴)
87adantl 485 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝑧𝐴)
9 breq1 5033 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
109rexbidv 3256 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑧𝑦))
11 breq2 5034 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
1211cbvrexvw 3397 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧𝑦 ↔ ∃𝑤𝐴 𝑧𝑤)
1310, 12syl6bb 290 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑤𝐴 𝑧𝑤))
1413rspcv 3566 . . . . . . . . 9 (𝑧𝐴 → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
158, 14syl 17 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
16 eleq2 2878 . . . . . . . . . . . . . . 15 (𝐴 = suc 𝑧 → (𝑤𝐴𝑤 ∈ suc 𝑧))
1716biimpa 480 . . . . . . . . . . . . . 14 ((𝐴 = suc 𝑧𝑤𝐴) → 𝑤 ∈ suc 𝑧)
18173ad2antl2 1183 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ suc 𝑧)
19 nnon 7566 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → 𝑧 ∈ On)
20 suceloni 7508 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → suc 𝑧 ∈ On)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → suc 𝑧 ∈ On)
22 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝐴 = suc 𝑧 → (𝐴 ∈ On ↔ suc 𝑧 ∈ On))
2322biimparc 483 . . . . . . . . . . . . . . . . 17 ((suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
2421, 23sylan 583 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
25243adant3 1129 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
26 onelon 6184 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
2725, 26sylan 583 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ On)
28 simpl1 1188 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ ω)
2928, 19syl 17 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ On)
30 onsssuc 6246 . . . . . . . . . . . . . 14 ((𝑤 ∈ On ∧ 𝑧 ∈ On) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3127, 29, 30syl2anc 587 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3218, 31mpbird 260 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
33 ssdomg 8538 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑤𝑧𝑤𝑧))
344, 32, 33mpsyl 68 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
35 domnsym 8627 . . . . . . . . . . 11 (𝑤𝑧 → ¬ 𝑧𝑤)
3634, 35syl 17 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → ¬ 𝑧𝑤)
3736nrexdv 3229 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ ∃𝑤𝐴 𝑧𝑤)
38373expia 1118 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃𝑤𝐴 𝑧𝑤))
3915, 38pm2.65d 199 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
4039intn3an3d 1478 . . . . . 6 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4140rexlimiva 3240 . . . . 5 (∃𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
423, 41jaoi 854 . . . 4 ((𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
431, 42syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4443con2i 141 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ 𝐴 ∈ ω)
45 ordom 7569 . . 3 Ord ω
46 eloni 6169 . . . 4 (𝐴 ∈ On → Ord 𝐴)
47463ad2ant2 1131 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → Ord 𝐴)
48 ordtri1 6192 . . 3 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
4945, 47, 48sylancr 590 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
5044, 49mpbird 260 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  Ord word 6158  Oncon0 6159  suc csuc 6161  ωcom 7560  cdom 8490  csdm 8491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-om 7561  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495
This theorem is referenced by:  winainf  10105  tskcard  10192  gruina  10229
  Copyright terms: Public domain W3C validator