MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Visualization version   GIF version

Theorem winainflem 10114
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem winainflem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7601 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧))
2 simp1 1133 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
32necon2bi 3044 . . . . 5 (𝐴 = ∅ → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4 vex 3484 . . . . . . . . . . . 12 𝑧 ∈ V
54sucid 6258 . . . . . . . . . . 11 𝑧 ∈ suc 𝑧
6 eleq2 2904 . . . . . . . . . . 11 (𝐴 = suc 𝑧 → (𝑧𝐴𝑧 ∈ suc 𝑧))
75, 6mpbiri 261 . . . . . . . . . 10 (𝐴 = suc 𝑧𝑧𝐴)
87adantl 485 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝑧𝐴)
9 breq1 5056 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
109rexbidv 3290 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑧𝑦))
11 breq2 5057 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
1211cbvrexvw 3436 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧𝑦 ↔ ∃𝑤𝐴 𝑧𝑤)
1310, 12syl6bb 290 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑤𝐴 𝑧𝑤))
1413rspcv 3605 . . . . . . . . 9 (𝑧𝐴 → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
158, 14syl 17 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
16 eleq2 2904 . . . . . . . . . . . . . . 15 (𝐴 = suc 𝑧 → (𝑤𝐴𝑤 ∈ suc 𝑧))
1716biimpa 480 . . . . . . . . . . . . . 14 ((𝐴 = suc 𝑧𝑤𝐴) → 𝑤 ∈ suc 𝑧)
18173ad2antl2 1183 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ suc 𝑧)
19 nnon 7581 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → 𝑧 ∈ On)
20 suceloni 7523 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → suc 𝑧 ∈ On)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → suc 𝑧 ∈ On)
22 eleq1 2903 . . . . . . . . . . . . . . . . . 18 (𝐴 = suc 𝑧 → (𝐴 ∈ On ↔ suc 𝑧 ∈ On))
2322biimparc 483 . . . . . . . . . . . . . . . . 17 ((suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
2421, 23sylan 583 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
25243adant3 1129 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
26 onelon 6204 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
2725, 26sylan 583 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ On)
28 simpl1 1188 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ ω)
2928, 19syl 17 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ On)
30 onsssuc 6266 . . . . . . . . . . . . . 14 ((𝑤 ∈ On ∧ 𝑧 ∈ On) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3127, 29, 30syl2anc 587 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3218, 31mpbird 260 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
33 ssdomg 8552 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑤𝑧𝑤𝑧))
344, 32, 33mpsyl 68 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
35 domnsym 8641 . . . . . . . . . . 11 (𝑤𝑧 → ¬ 𝑧𝑤)
3634, 35syl 17 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → ¬ 𝑧𝑤)
3736nrexdv 3263 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ ∃𝑤𝐴 𝑧𝑤)
38373expia 1118 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃𝑤𝐴 𝑧𝑤))
3915, 38pm2.65d 199 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
4039intn3an3d 1478 . . . . . 6 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4140rexlimiva 3274 . . . . 5 (∃𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
423, 41jaoi 854 . . . 4 ((𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
431, 42syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4443con2i 141 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ 𝐴 ∈ ω)
45 ordom 7584 . . 3 Ord ω
46 eloni 6189 . . . 4 (𝐴 ∈ On → Ord 𝐴)
47463ad2ant2 1131 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → Ord 𝐴)
48 ordtri1 6212 . . 3 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
4945, 47, 48sylancr 590 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
5044, 49mpbird 260 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  Vcvv 3481  wss 3920  c0 4277   class class class wbr 5053  Ord word 6178  Oncon0 6179  suc csuc 6181  ωcom 7575  cdom 8504  csdm 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3760  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-br 5054  df-opab 5116  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-om 7576  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509
This theorem is referenced by:  winainf  10115  tskcard  10202  gruina  10239
  Copyright terms: Public domain W3C validator