Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem10 Structured version   Visualization version   GIF version

Theorem fourierdlem10 42279
Description: Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem10.1 (𝜑𝐴 ∈ ℝ)
fourierdlem10.2 (𝜑𝐵 ∈ ℝ)
fourierdlem10.3 (𝜑𝐶 ∈ ℝ)
fourierdlem10.4 (𝜑𝐷 ∈ ℝ)
fourierdlem10.5 (𝜑𝐶 < 𝐷)
fourierdlem10.6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
Assertion
Ref Expression
fourierdlem10 (𝜑 → (𝐴𝐶𝐷𝐵))

Proof of Theorem fourierdlem10
StepHypRef Expression
1 fourierdlem10.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 fourierdlem10.3 . . 3 (𝜑𝐶 ∈ ℝ)
3 fourierdlem10.6 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
43adantr 481 . . . 4 ((𝜑𝐶 < 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
52rexrd 10679 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
65adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ*)
7 fourierdlem10.4 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
87rexrd 10679 . . . . . . 7 (𝜑𝐷 ∈ ℝ*)
98adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐷 ∈ ℝ*)
102, 1readdcld 10658 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐴) ∈ ℝ)
1110rehalfcld 11872 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐴) / 2) ∈ ℝ)
122, 7readdcld 10658 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
1312rehalfcld 11872 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1411, 13ifcld 4508 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1514adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
16 simplr 765 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < 𝐴)
172ad2antrr 722 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 ∈ ℝ)
181ad2antrr 722 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐴 ∈ ℝ)
19 avglt1 11863 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2116, 20mpbid 233 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐴) / 2))
22 iftrue 4469 . . . . . . . . 9 (𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2322adantl 482 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2421, 23breqtrrd 5085 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
25 fourierdlem10.5 . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
2625adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < 𝐷)
272adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ ℝ)
287adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ℝ)
29 avglt1 11863 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3027, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3126, 30mpbid 233 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐷) / 2))
32 iffalse 4472 . . . . . . . . . . 11 𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
3332eqcomd 2824 . . . . . . . . . 10 𝐴𝐷 → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3433adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3531, 34breqtrd 5083 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3635adantlr 711 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3724, 36pm2.61dan 809 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3822adantl 482 . . . . . . . . . 10 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
3910adantr 481 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ∈ ℝ)
4012adantr 481 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐷) ∈ ℝ)
41 2rp 12382 . . . . . . . . . . . 12 2 ∈ ℝ+
4241a1i 11 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → 2 ∈ ℝ+)
431adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴 ∈ ℝ)
447adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐷 ∈ ℝ)
452adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐶 ∈ ℝ)
46 simpr 485 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴𝐷)
4743, 44, 45, 46leadd2dd 11243 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ≤ (𝐶 + 𝐷))
4839, 40, 42, 47lediv1dd 12477 . . . . . . . . . 10 ((𝜑𝐴𝐷) → ((𝐶 + 𝐴) / 2) ≤ ((𝐶 + 𝐷) / 2))
4938, 48eqbrtrd 5079 . . . . . . . . 9 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5032adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
5113leidd 11194 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5251adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5350, 52eqbrtrd 5079 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5449, 53pm2.61dan 809 . . . . . . . 8 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
55 avglt2 11864 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
562, 7, 55syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
5725, 56mpbid 233 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) < 𝐷)
5814, 13, 7, 54, 57lelttrd 10786 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
5958adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
606, 9, 15, 37, 59eliood 41649 . . . . 5 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
611adantr 481 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ)
6211adantr 481 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
6314adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6463, 38eqled 10731 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
6514adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6611adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
67 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
681adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴 ∈ ℝ)
6928, 68ltnled 10775 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐷 < 𝐴 ↔ ¬ 𝐴𝐷))
7067, 69mpbird 258 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 < 𝐴)
7112adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) ∈ ℝ)
7210adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐴) ∈ ℝ)
7341a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → 2 ∈ ℝ+)
747adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 ∈ ℝ)
751adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐴 ∈ ℝ)
762adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐶 ∈ ℝ)
77 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 < 𝐴)
7874, 75, 76, 77ltadd2dd 10787 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) < (𝐶 + 𝐴))
7971, 72, 73, 78ltdiv1dd 12476 . . . . . . . . . . . . . 14 ((𝜑𝐷 < 𝐴) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8070, 79syldan 591 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8150, 80eqbrtrd 5079 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < ((𝐶 + 𝐴) / 2))
8265, 66, 81ltled 10776 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8364, 82pm2.61dan 809 . . . . . . . . . 10 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8483adantr 481 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
85 simpr 485 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → 𝐶 < 𝐴)
862adantr 481 . . . . . . . . . . 11 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ)
87 avglt2 11864 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8886, 61, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8985, 88mpbid 233 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) < 𝐴)
9015, 62, 61, 84, 89lelttrd 10786 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐴)
9115, 61, 90ltnsymd 10777 . . . . . . 7 ((𝜑𝐶 < 𝐴) → ¬ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
9291intn3an2d 1471 . . . . . 6 ((𝜑𝐶 < 𝐴) → ¬ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
931rexrd 10679 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
9493adantr 481 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ*)
95 fourierdlem10.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
9695rexrd 10679 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
9796adantr 481 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐵 ∈ ℝ*)
98 elioo2 12767 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
9994, 97, 98syl2anc 584 . . . . . 6 ((𝜑𝐶 < 𝐴) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
10092, 99mtbird 326 . . . . 5 ((𝜑𝐶 < 𝐴) → ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
101 nelss 4027 . . . . 5 ((if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
10260, 100, 101syl2anc 584 . . . 4 ((𝜑𝐶 < 𝐴) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1034, 102pm2.65da 813 . . 3 (𝜑 → ¬ 𝐶 < 𝐴)
1041, 2, 103nltled 10778 . 2 (𝜑𝐴𝐶)
1053adantr 481 . . . 4 ((𝜑𝐵 < 𝐷) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1065adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 ∈ ℝ*)
1078adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ*)
10895, 7readdcld 10658 . . . . . . . . 9 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
109108rehalfcld 11872 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐷) / 2) ∈ ℝ)
110109, 13ifcld 4508 . . . . . . 7 (𝜑 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
111110adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1122adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 ∈ ℝ)
11313adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
114110adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1152, 7, 29syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
11625, 115mpbid 233 . . . . . . . . . 10 (𝜑𝐶 < ((𝐶 + 𝐷) / 2))
117116adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
11812adantr 481 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ∈ ℝ)
119108adantr 481 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐵 + 𝐷) ∈ ℝ)
12041a1i 11 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → 2 ∈ ℝ+)
12195adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐵 ∈ ℝ)
1227adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐷 ∈ ℝ)
123 simpr 485 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐶𝐵)
124112, 121, 122, 123leadd1dd 11242 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ≤ (𝐵 + 𝐷))
125118, 119, 120, 124lediv1dd 12477 . . . . . . . . . 10 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ ((𝐵 + 𝐷) / 2))
126 iftrue 4469 . . . . . . . . . . 11 (𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
127126adantl 482 . . . . . . . . . 10 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
128125, 127breqtrrd 5085 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
129112, 113, 114, 117, 128ltletrd 10788 . . . . . . . 8 ((𝜑𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
130116adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
131 iffalse 4472 . . . . . . . . . . 11 𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
132131eqcomd 2824 . . . . . . . . . 10 𝐶𝐵 → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
133132adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
134130, 133breqtrd 5083 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
135129, 134pm2.61dan 809 . . . . . . 7 (𝜑𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
136135adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
137126adantl 482 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
138 simpr 485 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → 𝐵 < 𝐷)
13995adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ)
1407adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ)
141 avglt2 11864 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
142139, 140, 141syl2anc 584 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
143138, 142mpbid 233 . . . . . . . . 9 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) < 𝐷)
144143adantr 481 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → ((𝐵 + 𝐷) / 2) < 𝐷)
145137, 144eqbrtrd 5079 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
146131adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
14757adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) < 𝐷)
148146, 147eqbrtrd 5079 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
149148adantlr 711 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
150145, 149pm2.61dan 809 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
151106, 107, 111, 136, 150eliood 41649 . . . . 5 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
152109adantr 481 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) ∈ ℝ)
153 avglt1 11863 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
154139, 140, 153syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
155138, 154mpbid 233 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → 𝐵 < ((𝐵 + 𝐷) / 2))
156139, 152, 155ltled 10776 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
157156adantr 481 . . . . . . . . . 10 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
158157, 137breqtrrd 5085 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
15995adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ∈ ℝ)
16013adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1612adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 ∈ ℝ)
162 simpr 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
163159, 161ltnled 10775 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
164162, 163mpbird 258 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < 𝐶)
165159, 161, 160, 164, 130lttrd 10789 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < ((𝐶 + 𝐷) / 2))
166159, 160, 165ltled 10776 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ ((𝐶 + 𝐷) / 2))
167166, 133breqtrd 5083 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
168167adantlr 711 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
169158, 168pm2.61dan 809 . . . . . . . 8 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
170139, 111, 169lensymd 10779 . . . . . . 7 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)
171170intn3an3d 1472 . . . . . 6 ((𝜑𝐵 < 𝐷) → ¬ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
17293adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐴 ∈ ℝ*)
17396adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ*)
174 elioo2 12767 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
175172, 173, 174syl2anc 584 . . . . . 6 ((𝜑𝐵 < 𝐷) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
176171, 175mtbird 326 . . . . 5 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
177 nelss 4027 . . . . 5 ((if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
178151, 176, 177syl2anc 584 . . . 4 ((𝜑𝐵 < 𝐷) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
179105, 178pm2.65da 813 . . 3 (𝜑 → ¬ 𝐵 < 𝐷)
1807, 95, 179nltled 10778 . 2 (𝜑𝐷𝐵)
181104, 180jca 512 1 (𝜑 → (𝐴𝐶𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wss 3933  ifcif 4463   class class class wbr 5057  (class class class)co 7145  cr 10524   + caddc 10528  *cxr 10662   < clt 10663  cle 10664   / cdiv 11285  2c2 11680  +crp 12377  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-rp 12378  df-ioo 12730
This theorem is referenced by:  fourierdlem32  42301  fourierdlem33  42302  fourierdlem46  42314  fourierdlem50  42318  fourierdlem72  42340  fourierdlem76  42344  fourierdlem89  42357  fourierdlem91  42359  fourierdlem103  42371  fourierdlem104  42372
  Copyright terms: Public domain W3C validator