Proof of Theorem fourierdlem10
Step | Hyp | Ref
| Expression |
1 | | fourierdlem10.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | fourierdlem10.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
3 | | fourierdlem10.6 |
. . . . 5
⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
5 | 2 | rexrd 11025 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 ∈
ℝ*) |
7 | | fourierdlem10.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℝ) |
8 | 7 | rexrd 11025 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
9 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐷 ∈
ℝ*) |
10 | 2, 1 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℝ) |
11 | 10 | rehalfcld 12220 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
12 | 2, 7 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
13 | 12 | rehalfcld 12220 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
14 | 11, 13 | ifcld 4505 |
. . . . . . 7
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
15 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
16 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < 𝐴) |
17 | 2 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
18 | 1 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
19 | | avglt1 12211 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ 𝐶 < ((𝐶 + 𝐴) / 2))) |
20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → (𝐶 < 𝐴 ↔ 𝐶 < ((𝐶 + 𝐴) / 2))) |
21 | 16, 20 | mpbid 231 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < ((𝐶 + 𝐴) / 2)) |
22 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝐴 ≤ 𝐷 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
23 | 22 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
24 | 21, 23 | breqtrrd 5102 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
25 | | fourierdlem10.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 < 𝐷) |
26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < 𝐷) |
27 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
28 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐷 ∈ ℝ) |
29 | | avglt1 12211 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
31 | 26, 30 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
32 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ≤ 𝐷 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
33 | 32 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (¬
𝐴 ≤ 𝐷 → ((𝐶 + 𝐷) / 2) = if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
34 | 33 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) = if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
35 | 31, 34 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
36 | 35 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
37 | 24, 36 | pm2.61dan 810 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
38 | 22 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
39 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐴) ∈ ℝ) |
40 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐷) ∈ ℝ) |
41 | | 2rp 12735 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ+ |
42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 2 ∈
ℝ+) |
43 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
44 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐷 ∈ ℝ) |
45 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
46 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐴 ≤ 𝐷) |
47 | 43, 44, 45, 46 | leadd2dd 11590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐴) ≤ (𝐶 + 𝐷)) |
48 | 39, 40, 42, 47 | lediv1dd 12830 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐴) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
49 | 38, 48 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
50 | 32 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
51 | 13 | leidd 11541 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
52 | 51 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
53 | 50, 52 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
54 | 49, 53 | pm2.61dan 810 |
. . . . . . . 8
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
55 | | avglt2 12212 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷)) |
56 | 2, 7, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷)) |
57 | 25, 56 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) < 𝐷) |
58 | 14, 13, 7, 54, 57 | lelttrd 11133 |
. . . . . . 7
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
60 | 6, 9, 15, 37, 59 | eliood 43036 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷)) |
61 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐴 ∈ ℝ) |
62 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
63 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
64 | 63, 38 | eqled 11078 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
65 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
66 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
67 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ¬ 𝐴 ≤ 𝐷) |
68 | 1 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
69 | 28, 68 | ltnled 11122 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → (𝐷 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐷)) |
70 | 67, 69 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐷 < 𝐴) |
71 | 12 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐷) ∈ ℝ) |
72 | 10 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐴) ∈ ℝ) |
73 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 2 ∈
ℝ+) |
74 | 7 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐷 ∈ ℝ) |
75 | 1 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐴 ∈ ℝ) |
76 | 2 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐶 ∈ ℝ) |
77 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐷 < 𝐴) |
78 | 74, 75, 76, 77 | ltadd2dd 11134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐷) < (𝐶 + 𝐴)) |
79 | 71, 72, 73, 78 | ltdiv1dd 12829 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2)) |
80 | 70, 79 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2)) |
81 | 50, 80 | eqbrtrd 5096 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < ((𝐶 + 𝐴) / 2)) |
82 | 65, 66, 81 | ltled 11123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
83 | 64, 82 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
84 | 83 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
85 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 < 𝐴) |
86 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 ∈ ℝ) |
87 | | avglt2 12212 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴)) |
88 | 86, 61, 87 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴)) |
89 | 85, 88 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) < 𝐴) |
90 | 15, 62, 61, 84, 89 | lelttrd 11133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐴) |
91 | 15, 61, 90 | ltnsymd 11124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
92 | 91 | intn3an2d 1479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)) |
93 | 1 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
94 | 93 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐴 ∈
ℝ*) |
95 | | fourierdlem10.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
96 | 95 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
97 | 96 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐵 ∈
ℝ*) |
98 | | elioo2 13120 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
99 | 94, 97, 98 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
100 | 92, 99 | mtbird 325 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) |
101 | | nelss 3984 |
. . . . 5
⊢
((if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
102 | 60, 100, 101 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
103 | 4, 102 | pm2.65da 814 |
. . 3
⊢ (𝜑 → ¬ 𝐶 < 𝐴) |
104 | 1, 2, 103 | nltled 11125 |
. 2
⊢ (𝜑 → 𝐴 ≤ 𝐶) |
105 | 3 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
106 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐶 ∈
ℝ*) |
107 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐷 ∈
ℝ*) |
108 | 95, 7 | readdcld 11004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ) |
109 | 108 | rehalfcld 12220 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + 𝐷) / 2) ∈ ℝ) |
110 | 109, 13 | ifcld 4505 |
. . . . . . 7
⊢ (𝜑 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
111 | 110 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
112 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 ∈ ℝ) |
113 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
114 | 110 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
115 | 2, 7, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
116 | 25, 115 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 < ((𝐶 + 𝐷) / 2)) |
117 | 116 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
118 | 12 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐶 + 𝐷) ∈ ℝ) |
119 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐵 + 𝐷) ∈ ℝ) |
120 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 2 ∈
ℝ+) |
121 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐵 ∈ ℝ) |
122 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐷 ∈ ℝ) |
123 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) |
124 | 112, 121,
122, 123 | leadd1dd 11589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐶 + 𝐷) ≤ (𝐵 + 𝐷)) |
125 | 118, 119,
120, 124 | lediv1dd 12830 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ≤ ((𝐵 + 𝐷) / 2)) |
126 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝐶 ≤ 𝐵 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
127 | 126 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
128 | 125, 127 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
129 | 112, 113,
114, 117, 128 | ltletrd 11135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
130 | 116 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
131 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝐶 ≤ 𝐵 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
132 | 131 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≤ 𝐵 → ((𝐶 + 𝐷) / 2) = if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
133 | 132 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) = if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
134 | 130, 133 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
135 | 129, 134 | pm2.61dan 810 |
. . . . . . 7
⊢ (𝜑 → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
136 | 135 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
137 | 126 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
138 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 < 𝐷) |
139 | 95 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ∈ ℝ) |
140 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐷 ∈ ℝ) |
141 | | avglt2 12212 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷)) |
142 | 139, 140,
141 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷)) |
143 | 138, 142 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) < 𝐷) |
144 | 143 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → ((𝐵 + 𝐷) / 2) < 𝐷) |
145 | 137, 144 | eqbrtrd 5096 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
146 | 131 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
147 | 57 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) < 𝐷) |
148 | 146, 147 | eqbrtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
149 | 148 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
150 | 145, 149 | pm2.61dan 810 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
151 | 106, 107,
111, 136, 150 | eliood 43036 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷)) |
152 | 109 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) ∈ ℝ) |
153 | | avglt1 12211 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ 𝐵 < ((𝐵 + 𝐷) / 2))) |
154 | 139, 140,
153 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ 𝐵 < ((𝐵 + 𝐷) / 2))) |
155 | 138, 154 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 < ((𝐵 + 𝐷) / 2)) |
156 | 139, 152,
155 | ltled 11123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ≤ ((𝐵 + 𝐷) / 2)) |
157 | 156 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → 𝐵 ≤ ((𝐵 + 𝐷) / 2)) |
158 | 157, 137 | breqtrrd 5102 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
159 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ∈ ℝ) |
160 | 13 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
161 | 2 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 ∈ ℝ) |
162 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ¬ 𝐶 ≤ 𝐵) |
163 | 159, 161 | ltnled 11122 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
164 | 162, 163 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 < 𝐶) |
165 | 159, 161,
160, 164, 130 | lttrd 11136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 < ((𝐶 + 𝐷) / 2)) |
166 | 159, 160,
165 | ltled 11123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ ((𝐶 + 𝐷) / 2)) |
167 | 166, 133 | breqtrd 5100 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
168 | 167 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
169 | 158, 168 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
170 | 139, 111,
169 | lensymd 11126 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵) |
171 | 170 | intn3an3d 1480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)) |
172 | 93 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐴 ∈
ℝ*) |
173 | 96 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ∈
ℝ*) |
174 | | elioo2 13120 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
175 | 172, 173,
174 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
176 | 171, 175 | mtbird 325 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) |
177 | | nelss 3984 |
. . . . 5
⊢
((if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
178 | 151, 176,
177 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
179 | 105, 178 | pm2.65da 814 |
. . 3
⊢ (𝜑 → ¬ 𝐵 < 𝐷) |
180 | 7, 95, 179 | nltled 11125 |
. 2
⊢ (𝜑 → 𝐷 ≤ 𝐵) |
181 | 104, 180 | jca 512 |
1
⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) |