Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem10 Structured version   Visualization version   GIF version

Theorem fourierdlem10 46115
Description: Condition on the bounds of a nonempty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem10.1 (𝜑𝐴 ∈ ℝ)
fourierdlem10.2 (𝜑𝐵 ∈ ℝ)
fourierdlem10.3 (𝜑𝐶 ∈ ℝ)
fourierdlem10.4 (𝜑𝐷 ∈ ℝ)
fourierdlem10.5 (𝜑𝐶 < 𝐷)
fourierdlem10.6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
Assertion
Ref Expression
fourierdlem10 (𝜑 → (𝐴𝐶𝐷𝐵))

Proof of Theorem fourierdlem10
StepHypRef Expression
1 fourierdlem10.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 fourierdlem10.3 . . 3 (𝜑𝐶 ∈ ℝ)
3 fourierdlem10.6 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
43adantr 480 . . . 4 ((𝜑𝐶 < 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
52rexrd 11224 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
65adantr 480 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ*)
7 fourierdlem10.4 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
87rexrd 11224 . . . . . . 7 (𝜑𝐷 ∈ ℝ*)
98adantr 480 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐷 ∈ ℝ*)
102, 1readdcld 11203 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐴) ∈ ℝ)
1110rehalfcld 12429 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐴) / 2) ∈ ℝ)
122, 7readdcld 11203 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
1312rehalfcld 12429 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1411, 13ifcld 4535 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1514adantr 480 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
16 simplr 768 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < 𝐴)
172ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 ∈ ℝ)
181ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐴 ∈ ℝ)
19 avglt1 12420 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2116, 20mpbid 232 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐴) / 2))
22 iftrue 4494 . . . . . . . . 9 (𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2322adantl 481 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2421, 23breqtrrd 5135 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
25 fourierdlem10.5 . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
2625adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < 𝐷)
272adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ ℝ)
287adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ℝ)
29 avglt1 12420 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3027, 28, 29syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3126, 30mpbid 232 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐷) / 2))
32 iffalse 4497 . . . . . . . . . . 11 𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
3332eqcomd 2735 . . . . . . . . . 10 𝐴𝐷 → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3433adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3531, 34breqtrd 5133 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3635adantlr 715 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3724, 36pm2.61dan 812 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3822adantl 481 . . . . . . . . . 10 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
3910adantr 480 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ∈ ℝ)
4012adantr 480 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐷) ∈ ℝ)
41 2rp 12956 . . . . . . . . . . . 12 2 ∈ ℝ+
4241a1i 11 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → 2 ∈ ℝ+)
431adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴 ∈ ℝ)
447adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐷 ∈ ℝ)
452adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐶 ∈ ℝ)
46 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴𝐷)
4743, 44, 45, 46leadd2dd 11793 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ≤ (𝐶 + 𝐷))
4839, 40, 42, 47lediv1dd 13053 . . . . . . . . . 10 ((𝜑𝐴𝐷) → ((𝐶 + 𝐴) / 2) ≤ ((𝐶 + 𝐷) / 2))
4938, 48eqbrtrd 5129 . . . . . . . . 9 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5032adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
5113leidd 11744 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5251adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5350, 52eqbrtrd 5129 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5449, 53pm2.61dan 812 . . . . . . . 8 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
55 avglt2 12421 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
562, 7, 55syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
5725, 56mpbid 232 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) < 𝐷)
5814, 13, 7, 54, 57lelttrd 11332 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
5958adantr 480 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
606, 9, 15, 37, 59eliood 45496 . . . . 5 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
611adantr 480 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ)
6211adantr 480 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
6314adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6463, 38eqled 11277 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
6514adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6611adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
67 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
681adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴 ∈ ℝ)
6928, 68ltnled 11321 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐷 < 𝐴 ↔ ¬ 𝐴𝐷))
7067, 69mpbird 257 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 < 𝐴)
7112adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) ∈ ℝ)
7210adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐴) ∈ ℝ)
7341a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → 2 ∈ ℝ+)
747adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 ∈ ℝ)
751adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐴 ∈ ℝ)
762adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐶 ∈ ℝ)
77 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 < 𝐴)
7874, 75, 76, 77ltadd2dd 11333 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) < (𝐶 + 𝐴))
7971, 72, 73, 78ltdiv1dd 13052 . . . . . . . . . . . . . 14 ((𝜑𝐷 < 𝐴) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8070, 79syldan 591 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8150, 80eqbrtrd 5129 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < ((𝐶 + 𝐴) / 2))
8265, 66, 81ltled 11322 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8364, 82pm2.61dan 812 . . . . . . . . . 10 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8483adantr 480 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
85 simpr 484 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → 𝐶 < 𝐴)
862adantr 480 . . . . . . . . . . 11 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ)
87 avglt2 12421 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8886, 61, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8985, 88mpbid 232 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) < 𝐴)
9015, 62, 61, 84, 89lelttrd 11332 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐴)
9115, 61, 90ltnsymd 11323 . . . . . . 7 ((𝜑𝐶 < 𝐴) → ¬ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
9291intn3an2d 1482 . . . . . 6 ((𝜑𝐶 < 𝐴) → ¬ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
931rexrd 11224 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
9493adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ*)
95 fourierdlem10.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
9695rexrd 11224 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
9796adantr 480 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐵 ∈ ℝ*)
98 elioo2 13347 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
9994, 97, 98syl2anc 584 . . . . . 6 ((𝜑𝐶 < 𝐴) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
10092, 99mtbird 325 . . . . 5 ((𝜑𝐶 < 𝐴) → ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
101 nelss 4012 . . . . 5 ((if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
10260, 100, 101syl2anc 584 . . . 4 ((𝜑𝐶 < 𝐴) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1034, 102pm2.65da 816 . . 3 (𝜑 → ¬ 𝐶 < 𝐴)
1041, 2, 103nltled 11324 . 2 (𝜑𝐴𝐶)
1053adantr 480 . . . 4 ((𝜑𝐵 < 𝐷) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1065adantr 480 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 ∈ ℝ*)
1078adantr 480 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ*)
10895, 7readdcld 11203 . . . . . . . . 9 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
109108rehalfcld 12429 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐷) / 2) ∈ ℝ)
110109, 13ifcld 4535 . . . . . . 7 (𝜑 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
111110adantr 480 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1122adantr 480 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 ∈ ℝ)
11313adantr 480 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
114110adantr 480 . . . . . . . . 9 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1152, 7, 29syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
11625, 115mpbid 232 . . . . . . . . . 10 (𝜑𝐶 < ((𝐶 + 𝐷) / 2))
117116adantr 480 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
11812adantr 480 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ∈ ℝ)
119108adantr 480 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐵 + 𝐷) ∈ ℝ)
12041a1i 11 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → 2 ∈ ℝ+)
12195adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐵 ∈ ℝ)
1227adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐷 ∈ ℝ)
123 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐶𝐵)
124112, 121, 122, 123leadd1dd 11792 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ≤ (𝐵 + 𝐷))
125118, 119, 120, 124lediv1dd 13053 . . . . . . . . . 10 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ ((𝐵 + 𝐷) / 2))
126 iftrue 4494 . . . . . . . . . . 11 (𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
127126adantl 481 . . . . . . . . . 10 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
128125, 127breqtrrd 5135 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
129112, 113, 114, 117, 128ltletrd 11334 . . . . . . . 8 ((𝜑𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
130116adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
131 iffalse 4497 . . . . . . . . . . 11 𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
132131eqcomd 2735 . . . . . . . . . 10 𝐶𝐵 → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
133132adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
134130, 133breqtrd 5133 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
135129, 134pm2.61dan 812 . . . . . . 7 (𝜑𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
136135adantr 480 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
137126adantl 481 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
138 simpr 484 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → 𝐵 < 𝐷)
13995adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ)
1407adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ)
141 avglt2 12421 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
142139, 140, 141syl2anc 584 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
143138, 142mpbid 232 . . . . . . . . 9 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) < 𝐷)
144143adantr 480 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → ((𝐵 + 𝐷) / 2) < 𝐷)
145137, 144eqbrtrd 5129 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
146131adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
14757adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) < 𝐷)
148146, 147eqbrtrd 5129 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
149148adantlr 715 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
150145, 149pm2.61dan 812 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
151106, 107, 111, 136, 150eliood 45496 . . . . 5 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
152109adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) ∈ ℝ)
153 avglt1 12420 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
154139, 140, 153syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
155138, 154mpbid 232 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → 𝐵 < ((𝐵 + 𝐷) / 2))
156139, 152, 155ltled 11322 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
157156adantr 480 . . . . . . . . . 10 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
158157, 137breqtrrd 5135 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
15995adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ∈ ℝ)
16013adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1612adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 ∈ ℝ)
162 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
163159, 161ltnled 11321 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
164162, 163mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < 𝐶)
165159, 161, 160, 164, 130lttrd 11335 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < ((𝐶 + 𝐷) / 2))
166159, 160, 165ltled 11322 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ ((𝐶 + 𝐷) / 2))
167166, 133breqtrd 5133 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
168167adantlr 715 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
169158, 168pm2.61dan 812 . . . . . . . 8 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
170139, 111, 169lensymd 11325 . . . . . . 7 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)
171170intn3an3d 1483 . . . . . 6 ((𝜑𝐵 < 𝐷) → ¬ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
17293adantr 480 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐴 ∈ ℝ*)
17396adantr 480 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ*)
174 elioo2 13347 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
175172, 173, 174syl2anc 584 . . . . . 6 ((𝜑𝐵 < 𝐷) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
176171, 175mtbird 325 . . . . 5 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
177 nelss 4012 . . . . 5 ((if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
178151, 176, 177syl2anc 584 . . . 4 ((𝜑𝐵 < 𝐷) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
179105, 178pm2.65da 816 . . 3 (𝜑 → ¬ 𝐵 < 𝐷)
1807, 95, 179nltled 11324 . 2 (𝜑𝐷𝐵)
181104, 180jca 511 1 (𝜑 → (𝐴𝐶𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914  ifcif 4488   class class class wbr 5107  (class class class)co 7387  cr 11067   + caddc 11071  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-ioo 13310
This theorem is referenced by:  fourierdlem32  46137  fourierdlem33  46138  fourierdlem46  46150  fourierdlem50  46154  fourierdlem72  46176  fourierdlem76  46180  fourierdlem89  46193  fourierdlem91  46195  fourierdlem103  46207  fourierdlem104  46208
  Copyright terms: Public domain W3C validator