Proof of Theorem fourierdlem10
| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem10.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | fourierdlem10.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 3 | | fourierdlem10.6 |
. . . . 5
⊢ (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 5 | 2 | rexrd 11312 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 ∈
ℝ*) |
| 7 | | fourierdlem10.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 8 | 7 | rexrd 11312 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐷 ∈
ℝ*) |
| 10 | 2, 1 | readdcld 11291 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℝ) |
| 11 | 10 | rehalfcld 12515 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
| 12 | 2, 7 | readdcld 11291 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
| 13 | 12 | rehalfcld 12515 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
| 14 | 11, 13 | ifcld 4571 |
. . . . . . 7
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 16 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < 𝐴) |
| 17 | 2 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
| 18 | 1 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
| 19 | | avglt1 12506 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ 𝐶 < ((𝐶 + 𝐴) / 2))) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → (𝐶 < 𝐴 ↔ 𝐶 < ((𝐶 + 𝐴) / 2))) |
| 21 | 16, 20 | mpbid 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < ((𝐶 + 𝐴) / 2)) |
| 22 | | iftrue 4530 |
. . . . . . . . 9
⊢ (𝐴 ≤ 𝐷 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
| 24 | 21, 23 | breqtrrd 5170 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 25 | | fourierdlem10.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 < 𝐷) |
| 26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < 𝐷) |
| 27 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
| 28 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐷 ∈ ℝ) |
| 29 | | avglt1 12506 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
| 30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
| 31 | 26, 30 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
| 32 | | iffalse 4533 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ≤ 𝐷 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
| 33 | 32 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (¬
𝐴 ≤ 𝐷 → ((𝐶 + 𝐷) / 2) = if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 34 | 33 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) = if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 35 | 31, 34 | breqtrd 5168 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 36 | 35 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 < 𝐴) ∧ ¬ 𝐴 ≤ 𝐷) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 37 | 24, 36 | pm2.61dan 812 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 38 | 22 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2)) |
| 39 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐴) ∈ ℝ) |
| 40 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐷) ∈ ℝ) |
| 41 | | 2rp 13040 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ+ |
| 42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 2 ∈
ℝ+) |
| 43 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
| 44 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐷 ∈ ℝ) |
| 45 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐶 ∈ ℝ) |
| 46 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → 𝐴 ≤ 𝐷) |
| 47 | 43, 44, 45, 46 | leadd2dd 11879 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → (𝐶 + 𝐴) ≤ (𝐶 + 𝐷)) |
| 48 | 39, 40, 42, 47 | lediv1dd 13136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐴) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
| 49 | 38, 48 | eqbrtrd 5164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
| 50 | 32 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
| 51 | 13 | leidd 11830 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2)) |
| 53 | 50, 52 | eqbrtrd 5164 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
| 54 | 49, 53 | pm2.61dan 812 |
. . . . . . . 8
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2)) |
| 55 | | avglt2 12507 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷)) |
| 56 | 2, 7, 55 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷)) |
| 57 | 25, 56 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶 + 𝐷) / 2) < 𝐷) |
| 58 | 14, 13, 7, 54, 57 | lelttrd 11420 |
. . . . . . 7
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 59 | 58 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 60 | 6, 9, 15, 37, 59 | eliood 45516 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷)) |
| 61 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐴 ∈ ℝ) |
| 62 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
| 63 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 64 | 63, 38 | eqled 11365 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
| 65 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 66 | 11 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐴) / 2) ∈ ℝ) |
| 67 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ¬ 𝐴 ≤ 𝐷) |
| 68 | 1 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐴 ∈ ℝ) |
| 69 | 28, 68 | ltnled 11409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → (𝐷 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐷)) |
| 70 | 67, 69 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → 𝐷 < 𝐴) |
| 71 | 12 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐷) ∈ ℝ) |
| 72 | 10 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐴) ∈ ℝ) |
| 73 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 2 ∈
ℝ+) |
| 74 | 7 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐷 ∈ ℝ) |
| 75 | 1 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐴 ∈ ℝ) |
| 76 | 2 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐶 ∈ ℝ) |
| 77 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → 𝐷 < 𝐴) |
| 78 | 74, 75, 76, 77 | ltadd2dd 11421 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → (𝐶 + 𝐷) < (𝐶 + 𝐴)) |
| 79 | 71, 72, 73, 78 | ltdiv1dd 13135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐷 < 𝐴) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2)) |
| 80 | 70, 79 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2)) |
| 81 | 50, 80 | eqbrtrd 5164 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < ((𝐶 + 𝐴) / 2)) |
| 82 | 65, 66, 81 | ltled 11410 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐷) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
| 83 | 64, 82 | pm2.61dan 812 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
| 84 | 83 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2)) |
| 85 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 < 𝐴) |
| 86 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐶 ∈ ℝ) |
| 87 | | avglt2 12507 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴)) |
| 88 | 86, 61, 87 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴)) |
| 89 | 85, 88 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) < 𝐴) |
| 90 | 15, 62, 61, 84, 89 | lelttrd 11420 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐴) |
| 91 | 15, 61, 90 | ltnsymd 11411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2))) |
| 92 | 91 | intn3an2d 1481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)) |
| 93 | 1 | rexrd 11312 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 94 | 93 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐴 ∈
ℝ*) |
| 95 | | fourierdlem10.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 96 | 95 | rexrd 11312 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 97 | 96 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → 𝐵 ∈
ℝ*) |
| 98 | | elioo2 13429 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
| 99 | 94, 97, 98 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
| 100 | 92, 99 | mtbird 325 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) |
| 101 | | nelss 4048 |
. . . . 5
⊢
((if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐴 ≤ 𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 102 | 60, 100, 101 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 < 𝐴) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 103 | 4, 102 | pm2.65da 816 |
. . 3
⊢ (𝜑 → ¬ 𝐶 < 𝐴) |
| 104 | 1, 2, 103 | nltled 11412 |
. 2
⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| 105 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 106 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐶 ∈
ℝ*) |
| 107 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐷 ∈
ℝ*) |
| 108 | 95, 7 | readdcld 11291 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ) |
| 109 | 108 | rehalfcld 12515 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 + 𝐷) / 2) ∈ ℝ) |
| 110 | 109, 13 | ifcld 4571 |
. . . . . . 7
⊢ (𝜑 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 111 | 110 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 112 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 ∈ ℝ) |
| 113 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
| 114 | 110 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ) |
| 115 | 2, 7, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 < 𝐷 ↔ 𝐶 < ((𝐶 + 𝐷) / 2))) |
| 116 | 25, 115 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 < ((𝐶 + 𝐷) / 2)) |
| 117 | 116 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
| 118 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐶 + 𝐷) ∈ ℝ) |
| 119 | 108 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐵 + 𝐷) ∈ ℝ) |
| 120 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 2 ∈
ℝ+) |
| 121 | 95 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 122 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐷 ∈ ℝ) |
| 123 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) |
| 124 | 112, 121,
122, 123 | leadd1dd 11878 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → (𝐶 + 𝐷) ≤ (𝐵 + 𝐷)) |
| 125 | 118, 119,
120, 124 | lediv1dd 13136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ≤ ((𝐵 + 𝐷) / 2)) |
| 126 | | iftrue 4530 |
. . . . . . . . . . 11
⊢ (𝐶 ≤ 𝐵 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
| 127 | 126 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
| 128 | 125, 127 | breqtrrd 5170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 129 | 112, 113,
114, 117, 128 | ltletrd 11422 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ≤ 𝐵) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 130 | 116 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2)) |
| 131 | | iffalse 4533 |
. . . . . . . . . . 11
⊢ (¬
𝐶 ≤ 𝐵 → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
| 132 | 131 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (¬
𝐶 ≤ 𝐵 → ((𝐶 + 𝐷) / 2) = if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 133 | 132 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) = if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 134 | 130, 133 | breqtrd 5168 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 135 | 129, 134 | pm2.61dan 812 |
. . . . . . 7
⊢ (𝜑 → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 136 | 135 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐶 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 137 | 126 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2)) |
| 138 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 < 𝐷) |
| 139 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ∈ ℝ) |
| 140 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐷 ∈ ℝ) |
| 141 | | avglt2 12507 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷)) |
| 142 | 139, 140,
141 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷)) |
| 143 | 138, 142 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) < 𝐷) |
| 144 | 143 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → ((𝐵 + 𝐷) / 2) < 𝐷) |
| 145 | 137, 144 | eqbrtrd 5164 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 146 | 131 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2)) |
| 147 | 57 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) < 𝐷) |
| 148 | 146, 147 | eqbrtrd 5164 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 149 | 148 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ ¬ 𝐶 ≤ 𝐵) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 150 | 145, 149 | pm2.61dan 812 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷) |
| 151 | 106, 107,
111, 136, 150 | eliood 45516 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷)) |
| 152 | 109 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) ∈ ℝ) |
| 153 | | avglt1 12506 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ 𝐵 < ((𝐵 + 𝐷) / 2))) |
| 154 | 139, 140,
153 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ 𝐵 < ((𝐵 + 𝐷) / 2))) |
| 155 | 138, 154 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 < ((𝐵 + 𝐷) / 2)) |
| 156 | 139, 152,
155 | ltled 11410 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ≤ ((𝐵 + 𝐷) / 2)) |
| 157 | 156 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → 𝐵 ≤ ((𝐵 + 𝐷) / 2)) |
| 158 | 157, 137 | breqtrrd 5170 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 159 | 95 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ∈ ℝ) |
| 160 | 13 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ) |
| 161 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐶 ∈ ℝ) |
| 162 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → ¬ 𝐶 ≤ 𝐵) |
| 163 | 159, 161 | ltnled 11409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
| 164 | 162, 163 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 < 𝐶) |
| 165 | 159, 161,
160, 164, 130 | lttrd 11423 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 < ((𝐶 + 𝐷) / 2)) |
| 166 | 159, 160,
165 | ltled 11410 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ ((𝐶 + 𝐷) / 2)) |
| 167 | 166, 133 | breqtrd 5168 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 168 | 167 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 < 𝐷) ∧ ¬ 𝐶 ≤ 𝐵) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 169 | 158, 168 | pm2.61dan 812 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ≤ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2))) |
| 170 | 139, 111,
169 | lensymd 11413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵) |
| 171 | 170 | intn3an3d 1482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)) |
| 172 | 93 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐴 ∈
ℝ*) |
| 173 | 96 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → 𝐵 ∈
ℝ*) |
| 174 | | elioo2 13429 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
| 175 | 172, 173,
174 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))) |
| 176 | 171, 175 | mtbird 325 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) |
| 177 | | nelss 4048 |
. . . . 5
⊢
((if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐶 ≤ 𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 178 | 151, 176,
177 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 < 𝐷) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| 179 | 105, 178 | pm2.65da 816 |
. . 3
⊢ (𝜑 → ¬ 𝐵 < 𝐷) |
| 180 | 7, 95, 179 | nltled 11412 |
. 2
⊢ (𝜑 → 𝐷 ≤ 𝐵) |
| 181 | 104, 180 | jca 511 |
1
⊢ (𝜑 → (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) |