Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtnelioc Structured version   Visualization version   GIF version

Theorem gtnelioc 45520
Description: A real number larger than the upper bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
gtnelioc.a (𝜑𝐴 ∈ ℝ*)
gtnelioc.b (𝜑𝐵 ∈ ℝ)
gtnelioc.c (𝜑𝐶 ∈ ℝ*)
gtnelioc.bltc (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
gtnelioc (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))

Proof of Theorem gtnelioc
StepHypRef Expression
1 gtnelioc.bltc . . . 4 (𝜑𝐵 < 𝐶)
2 gtnelioc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
32rexrd 11285 . . . . 5 (𝜑𝐵 ∈ ℝ*)
4 gtnelioc.c . . . . 5 (𝜑𝐶 ∈ ℝ*)
5 xrltnle 11302 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
63, 4, 5syl2anc 584 . . . 4 (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
71, 6mpbid 232 . . 3 (𝜑 → ¬ 𝐶𝐵)
87intn3an3d 1483 . 2 (𝜑 → ¬ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
9 gtnelioc.a . . 3 (𝜑𝐴 ∈ ℝ*)
10 elioc2 13426 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
119, 2, 10syl2anc 584 . 2 (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
128, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  cr 11128  *cxr 11268   < clt 11269  cle 11270  (,]cioc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ioc 13367
This theorem is referenced by:  fourierswlem  46259  fouriersw  46260  etransclem18  46281  etransclem46  46309
  Copyright terms: Public domain W3C validator