![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbcq | Structured version Visualization version GIF version |
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbcq | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6528 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | 1 | sbceq1d 3795 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 [wsbc 3790 ℩cio 6513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-sbc 3791 df-ss 3979 df-uni 4912 df-iota 6515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |