Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbcq Structured version   Visualization version   GIF version

Theorem iotasbcq 44432
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbcq (∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒[(℩𝑥𝜓) / 𝑦]𝜒))

Proof of Theorem iotasbcq
StepHypRef Expression
1 iotabi 6528 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
21sbceq1d 3795 1 (∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒[(℩𝑥𝜓) / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1534  [wsbc 3790  cio 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-sbc 3791  df-ss 3979  df-uni 4912  df-iota 6515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator