Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbcq | Structured version Visualization version GIF version |
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbcq | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6390 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | 1 | sbceq1d 3716 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsbc 3711 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-in 3890 df-ss 3900 df-uni 4837 df-iota 6376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |