Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbcq Structured version   Visualization version   GIF version

Theorem iotasbcq 44468
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbcq (∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒[(℩𝑥𝜓) / 𝑦]𝜒))

Proof of Theorem iotasbcq
StepHypRef Expression
1 iotabi 6450 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
21sbceq1d 3746 1 (∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒[(℩𝑥𝜓) / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  [wsbc 3741  cio 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742  df-ss 3919  df-uni 4860  df-iota 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator