![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbcq | Structured version Visualization version GIF version |
Description: Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbcq | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6510 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | 1 | sbceq1d 3783 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒 ↔ [(℩𝑥𝜓) / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 [wsbc 3778 ℩cio 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-sbc 3779 df-in 3956 df-ss 3966 df-uni 4910 df-iota 6496 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |