MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabi Structured version   Visualization version   GIF version

Theorem iotabi 6515
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))

Proof of Theorem iotabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abbi 2793 . . . . 5 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
21eqeq1d 2727 . . . 4 (∀𝑥(𝜑𝜓) → ({𝑥𝜑} = {𝑧} ↔ {𝑥𝜓} = {𝑧}))
32abbidv 2794 . . 3 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
43unieqd 4922 . 2 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
5 df-iota 6501 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
6 df-iota 6501 . 2 (℩𝑥𝜓) = {𝑧 ∣ {𝑥𝜓} = {𝑧}}
74, 5, 63eqtr4g 2790 1 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  {cab 2702  {csn 4630   cuni 4909  cio 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-ss 3961  df-uni 4910  df-iota 6501
This theorem is referenced by:  iotabidv  6533  iotabii  6534  eusvobj1  7412  iotasbcq  44016
  Copyright terms: Public domain W3C validator