MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabi Structured version   Visualization version   GIF version

Theorem iotabi 6404
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotabi (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))

Proof of Theorem iotabi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abbi1 2808 . . . . 5 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
21eqeq1d 2742 . . . 4 (∀𝑥(𝜑𝜓) → ({𝑥𝜑} = {𝑧} ↔ {𝑥𝜓} = {𝑧}))
32abbidv 2809 . . 3 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
43unieqd 4859 . 2 (∀𝑥(𝜑𝜓) → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑥𝜓} = {𝑧}})
5 df-iota 6390 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
6 df-iota 6390 . 2 (℩𝑥𝜓) = {𝑧 ∣ {𝑥𝜓} = {𝑧}}
74, 5, 63eqtr4g 2805 1 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  {cab 2717  {csn 4567   cuni 4845  cio 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-uni 4846  df-iota 6390
This theorem is referenced by:  iotabidv  6416  iotabii  6417  eusvobj1  7265  iotasbcq  42025
  Copyright terms: Public domain W3C validator