Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnev Structured version   Visualization version   GIF version

Theorem elnev 44450
Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.)
Assertion
Ref Expression
elnev (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elnev
StepHypRef Expression
1 isset 3495 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 df-v 3483 . . . . 5 V = {𝑥𝑥 = 𝑥}
32eqeq2i 2750 . . . 4 ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥𝑥 = 𝑥})
4 abbib 2811 . . . . 5 ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥𝑥 = 𝑥} ↔ ∀𝑥𝑥 = 𝐴𝑥 = 𝑥))
5 equid 2011 . . . . . . 7 𝑥 = 𝑥
65tbt 369 . . . . . 6 𝑥 = 𝐴 ↔ (¬ 𝑥 = 𝐴𝑥 = 𝑥))
76albii 1818 . . . . 5 (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ∀𝑥𝑥 = 𝐴𝑥 = 𝑥))
8 alnex 1780 . . . . 5 (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴)
94, 7, 83bitr2i 299 . . . 4 ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥𝑥 = 𝑥} ↔ ¬ ∃𝑥 𝑥 = 𝐴)
103, 9bitri 275 . . 3 ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ ¬ ∃𝑥 𝑥 = 𝐴)
1110necon2abii 2991 . 2 (∃𝑥 𝑥 = 𝐴 ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V)
121, 11bitri 275 1 (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1537   = wceq 1539  wex 1778  wcel 2108  {cab 2714  wne 2940  Vcvv 3481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator