![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elnev | Structured version Visualization version GIF version |
Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
Ref | Expression |
---|---|
elnev | ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3495 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
2 | df-v 3483 | . . . . 5 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
3 | 2 | eqeq2i 2750 | . . . 4 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥}) |
4 | abbib 2811 | . . . . 5 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥} ↔ ∀𝑥(¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) | |
5 | equid 2011 | . . . . . . 7 ⊢ 𝑥 = 𝑥 | |
6 | 5 | tbt 369 | . . . . . 6 ⊢ (¬ 𝑥 = 𝐴 ↔ (¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) |
7 | 6 | albii 1818 | . . . . 5 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ∀𝑥(¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) |
8 | alnex 1780 | . . . . 5 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴) | |
9 | 4, 7, 8 | 3bitr2i 299 | . . . 4 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥} ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
10 | 3, 9 | bitri 275 | . . 3 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
11 | 10 | necon2abii 2991 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2108 {cab 2714 ≠ wne 2940 Vcvv 3481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3483 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |