| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elnev | Structured version Visualization version GIF version | ||
| Description: Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| elnev | ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 3469 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 2 | df-v 3457 | . . . . 5 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
| 3 | 2 | eqeq2i 2743 | . . . 4 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥}) |
| 4 | abbib 2799 | . . . . 5 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥} ↔ ∀𝑥(¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) | |
| 5 | equid 2012 | . . . . . . 7 ⊢ 𝑥 = 𝑥 | |
| 6 | 5 | tbt 369 | . . . . . 6 ⊢ (¬ 𝑥 = 𝐴 ↔ (¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) |
| 7 | 6 | albii 1819 | . . . . 5 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ∀𝑥(¬ 𝑥 = 𝐴 ↔ 𝑥 = 𝑥)) |
| 8 | alnex 1781 | . . . . 5 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴) | |
| 9 | 4, 7, 8 | 3bitr2i 299 | . . . 4 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝑥} ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
| 10 | 3, 9 | bitri 275 | . . 3 ⊢ ({𝑥 ∣ ¬ 𝑥 = 𝐴} = V ↔ ¬ ∃𝑥 𝑥 = 𝐴) |
| 11 | 10 | necon2abii 2977 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2927 Vcvv 3455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-v 3457 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |