Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3llem2 Structured version   Visualization version   GIF version

Theorem iscnrm3llem2 48630
Description: Lemma for iscnrm3l 48631. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 44957.) (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3llem2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛

Proof of Theorem iscnrm3llem2
StepHypRef Expression
1 sseq2 4035 . . 3 (𝑙 = (𝑛𝑍) → (𝐶𝑙𝐶 ⊆ (𝑛𝑍)))
2 ineq1 4234 . . . 4 (𝑙 = (𝑛𝑍) → (𝑙𝑘) = ((𝑛𝑍) ∩ 𝑘))
32eqeq1d 2742 . . 3 (𝑙 = (𝑛𝑍) → ((𝑙𝑘) = ∅ ↔ ((𝑛𝑍) ∩ 𝑘) = ∅))
41, 33anbi13d 1438 . 2 (𝑙 = (𝑛𝑍) → ((𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅)))
5 sseq2 4035 . . 3 (𝑘 = (𝑚𝑍) → (𝐷𝑘𝐷 ⊆ (𝑚𝑍)))
6 ineq2 4235 . . . 4 (𝑘 = (𝑚𝑍) → ((𝑛𝑍) ∩ 𝑘) = ((𝑛𝑍) ∩ (𝑚𝑍)))
76eqeq1d 2742 . . 3 (𝑘 = (𝑚𝑍) → (((𝑛𝑍) ∩ 𝑘) = ∅ ↔ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
85, 73anbi23d 1439 . 2 (𝑘 = (𝑚𝑍) → ((𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
9 simp11 1203 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
10 simp121 1305 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 ∈ 𝒫 𝐽)
11 simp2l 1199 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
12 elrestr 17488 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑛𝐽) → (𝑛𝑍) ∈ (𝐽t 𝑍))
139, 10, 11, 12syl3anc 1371 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑍) ∈ (𝐽t 𝑍))
14 simp2r 1200 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
15 elrestr 17488 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑚𝐽) → (𝑚𝑍) ∈ (𝐽t 𝑍))
169, 10, 14, 15syl3anc 1371 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑍) ∈ (𝐽t 𝑍))
17 simp31 1209 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑛)
18 eqidd 2741 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 = 𝐽)
1910elpwid 4631 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 𝐽)
20 eqidd 2741 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐽t 𝑍) = (𝐽t 𝑍))
21 simp122 1306 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
229, 18, 19, 20, 21restcls2lem 48592 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑍)
2317, 22ssind 4262 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ⊆ (𝑛𝑍))
24 simp32 1210 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑚)
25 simp123 1307 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
269, 18, 19, 20, 25restcls2lem 48592 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑍)
2724, 26ssind 4262 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ⊆ (𝑚𝑍))
28 inss1 4258 . . . . . . 7 (𝑛𝑍) ⊆ 𝑛
29 inss1 4258 . . . . . . 7 (𝑚𝑍) ⊆ 𝑚
30 ss2in 4266 . . . . . . 7 (((𝑛𝑍) ⊆ 𝑛 ∧ (𝑚𝑍) ⊆ 𝑚) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚))
3128, 29, 30mp2an 691 . . . . . 6 ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚)
32 simp33 1211 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
3331, 32sseqtrid 4061 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅)
34 ss0 4425 . . . . 5 (((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅ → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3533, 34syl 17 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3623, 27, 353jca 1128 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
3713, 16, 363jca 1128 . 2 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∈ (𝐽t 𝑍) ∧ (𝑚𝑍) ∈ (𝐽t 𝑍) ∧ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
384, 8, 37iscnrm3lem7 48619 1 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048
This theorem is referenced by:  iscnrm3l  48631
  Copyright terms: Public domain W3C validator