Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3llem2 Structured version   Visualization version   GIF version

Theorem iscnrm3llem2 49060
Description: Lemma for iscnrm3l 49061. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 45162.) (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3llem2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛

Proof of Theorem iscnrm3llem2
StepHypRef Expression
1 sseq2 3956 . . 3 (𝑙 = (𝑛𝑍) → (𝐶𝑙𝐶 ⊆ (𝑛𝑍)))
2 ineq1 4160 . . . 4 (𝑙 = (𝑛𝑍) → (𝑙𝑘) = ((𝑛𝑍) ∩ 𝑘))
32eqeq1d 2733 . . 3 (𝑙 = (𝑛𝑍) → ((𝑙𝑘) = ∅ ↔ ((𝑛𝑍) ∩ 𝑘) = ∅))
41, 33anbi13d 1440 . 2 (𝑙 = (𝑛𝑍) → ((𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅)))
5 sseq2 3956 . . 3 (𝑘 = (𝑚𝑍) → (𝐷𝑘𝐷 ⊆ (𝑚𝑍)))
6 ineq2 4161 . . . 4 (𝑘 = (𝑚𝑍) → ((𝑛𝑍) ∩ 𝑘) = ((𝑛𝑍) ∩ (𝑚𝑍)))
76eqeq1d 2733 . . 3 (𝑘 = (𝑚𝑍) → (((𝑛𝑍) ∩ 𝑘) = ∅ ↔ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
85, 73anbi23d 1441 . 2 (𝑘 = (𝑚𝑍) → ((𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
9 simp11 1204 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
10 simp121 1306 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 ∈ 𝒫 𝐽)
11 simp2l 1200 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
12 elrestr 17332 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑛𝐽) → (𝑛𝑍) ∈ (𝐽t 𝑍))
139, 10, 11, 12syl3anc 1373 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑍) ∈ (𝐽t 𝑍))
14 simp2r 1201 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
15 elrestr 17332 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑚𝐽) → (𝑚𝑍) ∈ (𝐽t 𝑍))
169, 10, 14, 15syl3anc 1373 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑍) ∈ (𝐽t 𝑍))
17 simp31 1210 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑛)
18 eqidd 2732 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 = 𝐽)
1910elpwid 4556 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 𝐽)
20 eqidd 2732 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐽t 𝑍) = (𝐽t 𝑍))
21 simp122 1307 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
229, 18, 19, 20, 21restcls2lem 49023 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑍)
2317, 22ssind 4188 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ⊆ (𝑛𝑍))
24 simp32 1211 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑚)
25 simp123 1308 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
269, 18, 19, 20, 25restcls2lem 49023 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑍)
2724, 26ssind 4188 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ⊆ (𝑚𝑍))
28 inss1 4184 . . . . . . 7 (𝑛𝑍) ⊆ 𝑛
29 inss1 4184 . . . . . . 7 (𝑚𝑍) ⊆ 𝑚
30 ss2in 4192 . . . . . . 7 (((𝑛𝑍) ⊆ 𝑛 ∧ (𝑚𝑍) ⊆ 𝑚) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚))
3128, 29, 30mp2an 692 . . . . . 6 ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚)
32 simp33 1212 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
3331, 32sseqtrid 3972 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅)
34 ss0 4349 . . . . 5 (((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅ → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3533, 34syl 17 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3623, 27, 353jca 1128 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
3713, 16, 363jca 1128 . 2 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∈ (𝐽t 𝑍) ∧ (𝑚𝑍) ∈ (𝐽t 𝑍) ∧ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
384, 8, 37iscnrm3lem7 49049 1 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934
This theorem is referenced by:  iscnrm3l  49061
  Copyright terms: Public domain W3C validator