Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3llem2 Structured version   Visualization version   GIF version

Theorem iscnrm3llem2 47671
Description: Lemma for iscnrm3l 47672. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 44044.) (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3llem2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛

Proof of Theorem iscnrm3llem2
StepHypRef Expression
1 sseq2 4008 . . 3 (𝑙 = (𝑛𝑍) → (𝐶𝑙𝐶 ⊆ (𝑛𝑍)))
2 ineq1 4205 . . . 4 (𝑙 = (𝑛𝑍) → (𝑙𝑘) = ((𝑛𝑍) ∩ 𝑘))
32eqeq1d 2733 . . 3 (𝑙 = (𝑛𝑍) → ((𝑙𝑘) = ∅ ↔ ((𝑛𝑍) ∩ 𝑘) = ∅))
41, 33anbi13d 1437 . 2 (𝑙 = (𝑛𝑍) → ((𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅)))
5 sseq2 4008 . . 3 (𝑘 = (𝑚𝑍) → (𝐷𝑘𝐷 ⊆ (𝑚𝑍)))
6 ineq2 4206 . . . 4 (𝑘 = (𝑚𝑍) → ((𝑛𝑍) ∩ 𝑘) = ((𝑛𝑍) ∩ (𝑚𝑍)))
76eqeq1d 2733 . . 3 (𝑘 = (𝑚𝑍) → (((𝑛𝑍) ∩ 𝑘) = ∅ ↔ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
85, 73anbi23d 1438 . 2 (𝑘 = (𝑚𝑍) → ((𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
9 simp11 1202 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
10 simp121 1304 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 ∈ 𝒫 𝐽)
11 simp2l 1198 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
12 elrestr 17379 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑛𝐽) → (𝑛𝑍) ∈ (𝐽t 𝑍))
139, 10, 11, 12syl3anc 1370 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑍) ∈ (𝐽t 𝑍))
14 simp2r 1199 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
15 elrestr 17379 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑚𝐽) → (𝑚𝑍) ∈ (𝐽t 𝑍))
169, 10, 14, 15syl3anc 1370 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑍) ∈ (𝐽t 𝑍))
17 simp31 1208 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑛)
18 eqidd 2732 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 = 𝐽)
1910elpwid 4611 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 𝐽)
20 eqidd 2732 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐽t 𝑍) = (𝐽t 𝑍))
21 simp122 1305 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
229, 18, 19, 20, 21restcls2lem 47633 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑍)
2317, 22ssind 4232 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ⊆ (𝑛𝑍))
24 simp32 1209 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑚)
25 simp123 1306 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
269, 18, 19, 20, 25restcls2lem 47633 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑍)
2724, 26ssind 4232 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ⊆ (𝑚𝑍))
28 inss1 4228 . . . . . . 7 (𝑛𝑍) ⊆ 𝑛
29 inss1 4228 . . . . . . 7 (𝑚𝑍) ⊆ 𝑚
30 ss2in 4236 . . . . . . 7 (((𝑛𝑍) ⊆ 𝑛 ∧ (𝑚𝑍) ⊆ 𝑚) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚))
3128, 29, 30mp2an 689 . . . . . 6 ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚)
32 simp33 1210 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
3331, 32sseqtrid 4034 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅)
34 ss0 4398 . . . . 5 (((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅ → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3533, 34syl 17 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3623, 27, 353jca 1127 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
3713, 16, 363jca 1127 . 2 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∈ (𝐽t 𝑍) ∧ (𝑚𝑍) ∈ (𝐽t 𝑍) ∧ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
384, 8, 37iscnrm3lem7 47660 1 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602   cuni 4908  cfv 6543  (class class class)co 7412  t crest 17371  Topctop 22616  Clsdccld 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-en 8944  df-fin 8947  df-fi 9410  df-rest 17373  df-topgen 17394  df-top 22617  df-topon 22634  df-bases 22670  df-cld 22744
This theorem is referenced by:  iscnrm3l  47672
  Copyright terms: Public domain W3C validator