Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3llem2 Structured version   Visualization version   GIF version

Theorem iscnrm3llem2 48944
Description: Lemma for iscnrm3l 48945. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 45043.) (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3llem2 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Distinct variable groups:   𝐶,𝑘,𝑙,𝑚,𝑛   𝐷,𝑘,𝑙,𝑚,𝑛   𝑘,𝐽,𝑙,𝑚,𝑛   𝑘,𝑍,𝑙,𝑚,𝑛

Proof of Theorem iscnrm3llem2
StepHypRef Expression
1 sseq2 3962 . . 3 (𝑙 = (𝑛𝑍) → (𝐶𝑙𝐶 ⊆ (𝑛𝑍)))
2 ineq1 4164 . . . 4 (𝑙 = (𝑛𝑍) → (𝑙𝑘) = ((𝑛𝑍) ∩ 𝑘))
32eqeq1d 2731 . . 3 (𝑙 = (𝑛𝑍) → ((𝑙𝑘) = ∅ ↔ ((𝑛𝑍) ∩ 𝑘) = ∅))
41, 33anbi13d 1440 . 2 (𝑙 = (𝑛𝑍) → ((𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅)))
5 sseq2 3962 . . 3 (𝑘 = (𝑚𝑍) → (𝐷𝑘𝐷 ⊆ (𝑚𝑍)))
6 ineq2 4165 . . . 4 (𝑘 = (𝑚𝑍) → ((𝑛𝑍) ∩ 𝑘) = ((𝑛𝑍) ∩ (𝑚𝑍)))
76eqeq1d 2731 . . 3 (𝑘 = (𝑚𝑍) → (((𝑛𝑍) ∩ 𝑘) = ∅ ↔ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
85, 73anbi23d 1441 . 2 (𝑘 = (𝑚𝑍) → ((𝐶 ⊆ (𝑛𝑍) ∧ 𝐷𝑘 ∧ ((𝑛𝑍) ∩ 𝑘) = ∅) ↔ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
9 simp11 1204 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 ∈ Top)
10 simp121 1306 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 ∈ 𝒫 𝐽)
11 simp2l 1200 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑛𝐽)
12 elrestr 17332 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑛𝐽) → (𝑛𝑍) ∈ (𝐽t 𝑍))
139, 10, 11, 12syl3anc 1373 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑍) ∈ (𝐽t 𝑍))
14 simp2r 1201 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑚𝐽)
15 elrestr 17332 . . . 4 ((𝐽 ∈ Top ∧ 𝑍 ∈ 𝒫 𝐽𝑚𝐽) → (𝑚𝑍) ∈ (𝐽t 𝑍))
169, 10, 14, 15syl3anc 1373 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑚𝑍) ∈ (𝐽t 𝑍))
17 simp31 1210 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑛)
18 eqidd 2730 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐽 = 𝐽)
1910elpwid 4560 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝑍 𝐽)
20 eqidd 2730 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐽t 𝑍) = (𝐽t 𝑍))
21 simp122 1307 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ∈ (Clsd‘(𝐽t 𝑍)))
229, 18, 19, 20, 21restcls2lem 48907 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶𝑍)
2317, 22ssind 4192 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐶 ⊆ (𝑛𝑍))
24 simp32 1211 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑚)
25 simp123 1308 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ∈ (Clsd‘(𝐽t 𝑍)))
269, 18, 19, 20, 25restcls2lem 48907 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷𝑍)
2724, 26ssind 4192 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → 𝐷 ⊆ (𝑚𝑍))
28 inss1 4188 . . . . . . 7 (𝑛𝑍) ⊆ 𝑛
29 inss1 4188 . . . . . . 7 (𝑚𝑍) ⊆ 𝑚
30 ss2in 4196 . . . . . . 7 (((𝑛𝑍) ⊆ 𝑛 ∧ (𝑚𝑍) ⊆ 𝑚) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚))
3128, 29, 30mp2an 692 . . . . . 6 ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ (𝑛𝑚)
32 simp33 1212 . . . . . 6 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑛𝑚) = ∅)
3331, 32sseqtrid 3978 . . . . 5 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅)
34 ss0 4353 . . . . 5 (((𝑛𝑍) ∩ (𝑚𝑍)) ⊆ ∅ → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3533, 34syl 17 . . . 4 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)
3623, 27, 353jca 1128 . . 3 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅))
3713, 16, 363jca 1128 . 2 (((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) ∧ (𝑛𝐽𝑚𝐽) ∧ (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑛𝑍) ∈ (𝐽t 𝑍) ∧ (𝑚𝑍) ∈ (𝐽t 𝑍) ∧ (𝐶 ⊆ (𝑛𝑍) ∧ 𝐷 ⊆ (𝑚𝑍) ∧ ((𝑛𝑍) ∩ (𝑚𝑍)) = ∅)))
384, 8, 37iscnrm3lem7 48933 1 ((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858  cfv 6482  (class class class)co 7349  t crest 17324  Topctop 22778  Clsdccld 22901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-en 8873  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904
This theorem is referenced by:  iscnrm3l  48945
  Copyright terms: Public domain W3C validator