Proof of Theorem iscnrm3rlem8
| Step | Hyp | Ref
| Expression |
| 1 | | sseq2 4010 |
. . 3
⊢ (𝑛 = 𝑙 → (𝑆 ⊆ 𝑛 ↔ 𝑆 ⊆ 𝑙)) |
| 2 | | ineq1 4213 |
. . . 4
⊢ (𝑛 = 𝑙 → (𝑛 ∩ 𝑚) = (𝑙 ∩ 𝑚)) |
| 3 | 2 | eqeq1d 2739 |
. . 3
⊢ (𝑛 = 𝑙 → ((𝑛 ∩ 𝑚) = ∅ ↔ (𝑙 ∩ 𝑚) = ∅)) |
| 4 | 1, 3 | 3anbi13d 1440 |
. 2
⊢ (𝑛 = 𝑙 → ((𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑙 ∩ 𝑚) = ∅))) |
| 5 | | sseq2 4010 |
. . 3
⊢ (𝑚 = 𝑘 → (𝑇 ⊆ 𝑚 ↔ 𝑇 ⊆ 𝑘)) |
| 6 | | ineq2 4214 |
. . . 4
⊢ (𝑚 = 𝑘 → (𝑙 ∩ 𝑚) = (𝑙 ∩ 𝑘)) |
| 7 | 6 | eqeq1d 2739 |
. . 3
⊢ (𝑚 = 𝑘 → ((𝑙 ∩ 𝑚) = ∅ ↔ (𝑙 ∩ 𝑘) = ∅)) |
| 8 | 5, 7 | 3anbi23d 1441 |
. 2
⊢ (𝑚 = 𝑘 → ((𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑙 ∩ 𝑚) = ∅) ↔ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
| 9 | | simp11 1204 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝐽 ∈ Top) |
| 10 | | simp12l 1287 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ∈ 𝒫 ∪ 𝐽) |
| 11 | 10 | elpwid 4609 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ⊆ ∪ 𝐽) |
| 12 | | simp12r 1288 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ∈ 𝒫 ∪ 𝐽) |
| 13 | 12 | elpwid 4609 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ⊆ ∪ 𝐽) |
| 14 | | simp2l 1200 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
| 15 | 9, 11, 13, 14 | iscnrm3rlem7 48843 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑙 ∈ 𝐽) |
| 16 | | simp2r 1201 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
| 17 | 9, 11, 13, 16 | iscnrm3rlem7 48843 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑘 ∈ 𝐽) |
| 18 | | simp13l 1289 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
| 19 | | simp31 1210 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙) |
| 20 | 9, 11, 18, 19 | iscnrm3rlem4 48840 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ⊆ 𝑙) |
| 21 | | incom 4209 |
. . . . . 6
⊢
(((cls‘𝐽)‘𝑆) ∩ 𝑇) = (𝑇 ∩ ((cls‘𝐽)‘𝑆)) |
| 22 | | simp13r 1290 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| 23 | 21, 22 | eqtr3id 2791 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑇 ∩ ((cls‘𝐽)‘𝑆)) = ∅) |
| 24 | | simp32 1211 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘) |
| 25 | 9, 13, 23, 24 | iscnrm3rlem4 48840 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ⊆ 𝑘) |
| 26 | | simp33 1212 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑙 ∩ 𝑘) = ∅) |
| 27 | 20, 25, 26 | 3jca 1129 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) |
| 28 | 15, 17, 27 | 3jca 1129 |
. 2
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑙 ∈ 𝐽 ∧ 𝑘 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
| 29 | 4, 8, 28 | iscnrm3lem7 48836 |
1
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |