Proof of Theorem iscnrm3rlem8
Step | Hyp | Ref
| Expression |
1 | | sseq2 3943 |
. . 3
⊢ (𝑛 = 𝑙 → (𝑆 ⊆ 𝑛 ↔ 𝑆 ⊆ 𝑙)) |
2 | | ineq1 4136 |
. . . 4
⊢ (𝑛 = 𝑙 → (𝑛 ∩ 𝑚) = (𝑙 ∩ 𝑚)) |
3 | 2 | eqeq1d 2740 |
. . 3
⊢ (𝑛 = 𝑙 → ((𝑛 ∩ 𝑚) = ∅ ↔ (𝑙 ∩ 𝑚) = ∅)) |
4 | 1, 3 | 3anbi13d 1436 |
. 2
⊢ (𝑛 = 𝑙 → ((𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑙 ∩ 𝑚) = ∅))) |
5 | | sseq2 3943 |
. . 3
⊢ (𝑚 = 𝑘 → (𝑇 ⊆ 𝑚 ↔ 𝑇 ⊆ 𝑘)) |
6 | | ineq2 4137 |
. . . 4
⊢ (𝑚 = 𝑘 → (𝑙 ∩ 𝑚) = (𝑙 ∩ 𝑘)) |
7 | 6 | eqeq1d 2740 |
. . 3
⊢ (𝑚 = 𝑘 → ((𝑙 ∩ 𝑚) = ∅ ↔ (𝑙 ∩ 𝑘) = ∅)) |
8 | 5, 7 | 3anbi23d 1437 |
. 2
⊢ (𝑚 = 𝑘 → ((𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑙 ∩ 𝑚) = ∅) ↔ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
9 | | simp11 1201 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝐽 ∈ Top) |
10 | | simp12l 1284 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ∈ 𝒫 ∪ 𝐽) |
11 | 10 | elpwid 4541 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ⊆ ∪ 𝐽) |
12 | | simp12r 1285 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ∈ 𝒫 ∪ 𝐽) |
13 | 12 | elpwid 4541 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ⊆ ∪ 𝐽) |
14 | | simp2l 1197 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
15 | 9, 11, 13, 14 | iscnrm3rlem7 46128 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑙 ∈ 𝐽) |
16 | | simp2r 1198 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
17 | 9, 11, 13, 16 | iscnrm3rlem7 46128 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑘 ∈ 𝐽) |
18 | | simp13l 1286 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅) |
19 | | simp31 1207 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙) |
20 | 9, 11, 18, 19 | iscnrm3rlem4 46125 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑆 ⊆ 𝑙) |
21 | | incom 4131 |
. . . . . 6
⊢
(((cls‘𝐽)‘𝑆) ∩ 𝑇) = (𝑇 ∩ ((cls‘𝐽)‘𝑆)) |
22 | | simp13r 1287 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
23 | 21, 22 | eqtr3id 2793 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑇 ∩ ((cls‘𝐽)‘𝑆)) = ∅) |
24 | | simp32 1208 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘) |
25 | 9, 13, 23, 24 | iscnrm3rlem4 46125 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → 𝑇 ⊆ 𝑘) |
26 | | simp33 1209 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑙 ∩ 𝑘) = ∅) |
27 | 20, 25, 26 | 3jca 1126 |
. . 3
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) |
28 | 15, 17, 27 | 3jca 1126 |
. 2
⊢ (((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) ∧ (𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ∧ 𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (𝑙 ∈ 𝐽 ∧ 𝑘 ∈ 𝐽 ∧ (𝑆 ⊆ 𝑙 ∧ 𝑇 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
29 | 4, 8, 28 | iscnrm3lem7 46121 |
1
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |