Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem1 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem1 49039
Description: Lemma for iscnrm3rlem2 49040. The hypothesis could be generalized to (𝜑 → (𝑆𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.)
Hypothesis
Ref Expression
iscnrm3rlem1.1 (𝜑𝑆𝑋)
Assertion
Ref Expression
iscnrm3rlem1 (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))

Proof of Theorem iscnrm3rlem1
StepHypRef Expression
1 difindi 4239 . . . 4 (𝑋 ∖ (𝑆𝑇)) = ((𝑋𝑆) ∪ (𝑋𝑇))
21ineq2i 4164 . . 3 (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))) = (𝑆 ∩ ((𝑋𝑆) ∪ (𝑋𝑇)))
3 indi 4231 . . 3 (𝑆 ∩ ((𝑋𝑆) ∪ (𝑋𝑇))) = ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇)))
4 disjdif 4419 . . . . 5 (𝑆 ∩ (𝑋𝑆)) = ∅
54uneq1i 4111 . . . 4 ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇))) = (∅ ∪ (𝑆 ∩ (𝑋𝑇)))
6 0un 4343 . . . 4 (∅ ∪ (𝑆 ∩ (𝑋𝑇))) = (𝑆 ∩ (𝑋𝑇))
7 indif2 4228 . . . 4 (𝑆 ∩ (𝑋𝑇)) = ((𝑆𝑋) ∖ 𝑇)
85, 6, 73eqtri 2758 . . 3 ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇))) = ((𝑆𝑋) ∖ 𝑇)
92, 3, 83eqtri 2758 . 2 (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))) = ((𝑆𝑋) ∖ 𝑇)
10 iscnrm3rlem1.1 . . . 4 (𝜑𝑆𝑋)
11 dfss2 3915 . . . 4 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
1210, 11sylib 218 . . 3 (𝜑 → (𝑆𝑋) = 𝑆)
1312difeq1d 4072 . 2 (𝜑 → ((𝑆𝑋) ∖ 𝑇) = (𝑆𝑇))
149, 13eqtr2id 2779 1 (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281
This theorem is referenced by:  iscnrm3rlem2  49040
  Copyright terms: Public domain W3C validator