Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem1 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem2 46235. The hypothesis could be generalized to (𝜑 → (𝑆 ∖ 𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem1.1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
iscnrm3rlem1 | ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difindi 4215 | . . . 4 ⊢ (𝑋 ∖ (𝑆 ∩ 𝑇)) = ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇)) | |
2 | 1 | ineq2i 4143 | . . 3 ⊢ (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇))) = (𝑆 ∩ ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇))) |
3 | indi 4207 | . . 3 ⊢ (𝑆 ∩ ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇))) = ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) | |
4 | disjdif 4405 | . . . . 5 ⊢ (𝑆 ∩ (𝑋 ∖ 𝑆)) = ∅ | |
5 | 4 | uneq1i 4093 | . . . 4 ⊢ ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = (∅ ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) |
6 | 0un 4326 | . . . 4 ⊢ (∅ ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = (𝑆 ∩ (𝑋 ∖ 𝑇)) | |
7 | indif2 4204 | . . . 4 ⊢ (𝑆 ∩ (𝑋 ∖ 𝑇)) = ((𝑆 ∩ 𝑋) ∖ 𝑇) | |
8 | 5, 6, 7 | 3eqtri 2770 | . . 3 ⊢ ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = ((𝑆 ∩ 𝑋) ∖ 𝑇) |
9 | 2, 3, 8 | 3eqtri 2770 | . 2 ⊢ (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇))) = ((𝑆 ∩ 𝑋) ∖ 𝑇) |
10 | iscnrm3rlem1.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
11 | df-ss 3904 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑆 ∩ 𝑋) = 𝑆) | |
12 | 10, 11 | sylib 217 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑆) |
13 | 12 | difeq1d 4056 | . 2 ⊢ (𝜑 → ((𝑆 ∩ 𝑋) ∖ 𝑇) = (𝑆 ∖ 𝑇)) |
14 | 9, 13 | eqtr2id 2791 | 1 ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 |
This theorem is referenced by: iscnrm3rlem2 46235 |
Copyright terms: Public domain | W3C validator |