Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem1 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem1 48737
Description: Lemma for iscnrm3rlem2 48738. The hypothesis could be generalized to (𝜑 → (𝑆𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.)
Hypothesis
Ref Expression
iscnrm3rlem1.1 (𝜑𝑆𝑋)
Assertion
Ref Expression
iscnrm3rlem1 (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))

Proof of Theorem iscnrm3rlem1
StepHypRef Expression
1 difindi 4298 . . . 4 (𝑋 ∖ (𝑆𝑇)) = ((𝑋𝑆) ∪ (𝑋𝑇))
21ineq2i 4225 . . 3 (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))) = (𝑆 ∩ ((𝑋𝑆) ∪ (𝑋𝑇)))
3 indi 4290 . . 3 (𝑆 ∩ ((𝑋𝑆) ∪ (𝑋𝑇))) = ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇)))
4 disjdif 4478 . . . . 5 (𝑆 ∩ (𝑋𝑆)) = ∅
54uneq1i 4174 . . . 4 ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇))) = (∅ ∪ (𝑆 ∩ (𝑋𝑇)))
6 0un 4402 . . . 4 (∅ ∪ (𝑆 ∩ (𝑋𝑇))) = (𝑆 ∩ (𝑋𝑇))
7 indif2 4287 . . . 4 (𝑆 ∩ (𝑋𝑇)) = ((𝑆𝑋) ∖ 𝑇)
85, 6, 73eqtri 2767 . . 3 ((𝑆 ∩ (𝑋𝑆)) ∪ (𝑆 ∩ (𝑋𝑇))) = ((𝑆𝑋) ∖ 𝑇)
92, 3, 83eqtri 2767 . 2 (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))) = ((𝑆𝑋) ∖ 𝑇)
10 iscnrm3rlem1.1 . . . 4 (𝜑𝑆𝑋)
11 dfss2 3981 . . . 4 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
1210, 11sylib 218 . . 3 (𝜑 → (𝑆𝑋) = 𝑆)
1312difeq1d 4135 . 2 (𝜑 → ((𝑆𝑋) ∖ 𝑇) = (𝑆𝑇))
149, 13eqtr2id 2788 1 (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340
This theorem is referenced by:  iscnrm3rlem2  48738
  Copyright terms: Public domain W3C validator