| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem2 48786. The hypothesis could be generalized to (𝜑 → (𝑆 ∖ 𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem1.1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| iscnrm3rlem1 | ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difindi 4274 | . . . 4 ⊢ (𝑋 ∖ (𝑆 ∩ 𝑇)) = ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇)) | |
| 2 | 1 | ineq2i 4199 | . . 3 ⊢ (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇))) = (𝑆 ∩ ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇))) |
| 3 | indi 4266 | . . 3 ⊢ (𝑆 ∩ ((𝑋 ∖ 𝑆) ∪ (𝑋 ∖ 𝑇))) = ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) | |
| 4 | disjdif 4454 | . . . . 5 ⊢ (𝑆 ∩ (𝑋 ∖ 𝑆)) = ∅ | |
| 5 | 4 | uneq1i 4146 | . . . 4 ⊢ ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = (∅ ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) |
| 6 | 0un 4378 | . . . 4 ⊢ (∅ ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = (𝑆 ∩ (𝑋 ∖ 𝑇)) | |
| 7 | indif2 4263 | . . . 4 ⊢ (𝑆 ∩ (𝑋 ∖ 𝑇)) = ((𝑆 ∩ 𝑋) ∖ 𝑇) | |
| 8 | 5, 6, 7 | 3eqtri 2761 | . . 3 ⊢ ((𝑆 ∩ (𝑋 ∖ 𝑆)) ∪ (𝑆 ∩ (𝑋 ∖ 𝑇))) = ((𝑆 ∩ 𝑋) ∖ 𝑇) |
| 9 | 2, 3, 8 | 3eqtri 2761 | . 2 ⊢ (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇))) = ((𝑆 ∩ 𝑋) ∖ 𝑇) |
| 10 | iscnrm3rlem1.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 11 | dfss2 3951 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑆 ∩ 𝑋) = 𝑆) | |
| 12 | 10, 11 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑆) |
| 13 | 12 | difeq1d 4107 | . 2 ⊢ (𝜑 → ((𝑆 ∩ 𝑋) ∖ 𝑇) = (𝑆 ∖ 𝑇)) |
| 14 | 9, 13 | eqtr2id 2782 | 1 ⊢ (𝜑 → (𝑆 ∖ 𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆 ∩ 𝑇)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3930 ∪ cun 3931 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 |
| This theorem is referenced by: iscnrm3rlem2 48786 |
| Copyright terms: Public domain | W3C validator |