![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishlo | Structured version Visualization version GIF version |
Description: The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ishlo | ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hlo 30918 | . 2 ⊢ CHilOLD = (CBan ∩ CPreHilOLD) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CPreHilOLDccphlo 30844 CBanccbn 30894 CHilOLDchlo 30917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-hlo 30918 |
This theorem is referenced by: hlobn 30920 hlph 30921 cnchl 30948 hhhl 31236 |
Copyright terms: Public domain | W3C validator |