| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishlo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ishlo | ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hlo 30867 | . 2 ⊢ CHilOLD = (CBan ∩ CPreHilOLD) | |
| 2 | 1 | elin2 4178 | 1 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 CPreHilOLDccphlo 30793 CBanccbn 30843 CHilOLDchlo 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-hlo 30867 |
| This theorem is referenced by: hlobn 30869 hlph 30870 cnchl 30897 hhhl 31185 |
| Copyright terms: Public domain | W3C validator |