MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlo Structured version   Visualization version   GIF version

Theorem ishlo 30823
Description: The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
ishlo (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))

Proof of Theorem ishlo
StepHypRef Expression
1 df-hlo 30822 . 2 CHilOLD = (CBan ∩ CPreHilOLD)
21elin2 4169 1 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  CPreHilOLDccphlo 30748  CBanccbn 30798  CHilOLDchlo 30821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-hlo 30822
This theorem is referenced by:  hlobn  30824  hlph  30825  cnchl  30852  hhhl  31140
  Copyright terms: Public domain W3C validator