MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishlo Structured version   Visualization version   GIF version

Theorem ishlo 30869
Description: The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
ishlo (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))

Proof of Theorem ishlo
StepHypRef Expression
1 df-hlo 30868 . 2 CHilOLD = (CBan ∩ CPreHilOLD)
21elin2 4152 1 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2113  CPreHilOLDccphlo 30794  CBanccbn 30844  CHilOLDchlo 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-hlo 30868
This theorem is referenced by:  hlobn  30870  hlph  30871  cnchl  30898  hhhl  31186
  Copyright terms: Public domain W3C validator