| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlobn | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlobn | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlo 30873 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 CPreHilOLDccphlo 30798 CBanccbn 30848 CHilOLDchlo 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-hlo 30872 |
| This theorem is referenced by: hlrel 30876 hlnv 30877 hlcmet 30880 htthlem 30903 |
| Copyright terms: Public domain | W3C validator |