MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlobn Structured version   Visualization version   GIF version

Theorem hlobn 30824
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlobn (𝑈 ∈ CHilOLD𝑈 ∈ CBan)

Proof of Theorem hlobn
StepHypRef Expression
1 ishlo 30823 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simplbi 497 1 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CPreHilOLDccphlo 30748  CBanccbn 30798  CHilOLDchlo 30821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-hlo 30822
This theorem is referenced by:  hlrel  30826  hlnv  30827  hlcmet  30830  htthlem  30853
  Copyright terms: Public domain W3C validator