Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlobn | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlobn | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlo 29249 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 CPreHilOLDccphlo 29174 CBanccbn 29224 CHilOLDchlo 29247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-hlo 29248 |
This theorem is referenced by: hlrel 29252 hlnv 29253 hlcmet 29256 htthlem 29279 |
Copyright terms: Public domain | W3C validator |