MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlobn Structured version   Visualization version   GIF version

Theorem hlobn 30920
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlobn (𝑈 ∈ CHilOLD𝑈 ∈ CBan)

Proof of Theorem hlobn
StepHypRef Expression
1 ishlo 30919 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simplbi 497 1 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  CPreHilOLDccphlo 30844  CBanccbn 30894  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-hlo 30918
This theorem is referenced by:  hlrel  30922  hlnv  30923  hlcmet  30926  htthlem  30949
  Copyright terms: Public domain W3C validator