Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlobn | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlobn | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlo 29150 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CPreHilOLDccphlo 29075 CBanccbn 29125 CHilOLDchlo 29148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-hlo 29149 |
This theorem is referenced by: hlrel 29153 hlnv 29154 hlcmet 29157 htthlem 29180 |
Copyright terms: Public domain | W3C validator |