Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnchl | Structured version Visualization version GIF version |
Description: The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnhl.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
Ref | Expression |
---|---|
cnchl | ⊢ 𝑈 ∈ CHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnhl.6 | . . 3 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
2 | 1 | cnbn 28974 | . 2 ⊢ 𝑈 ∈ CBan |
3 | 1 | cncph 28924 | . 2 ⊢ 𝑈 ∈ CPreHilOLD |
4 | ishlo 28992 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
5 | 2, 3, 4 | mpbir2an 711 | 1 ⊢ 𝑈 ∈ CHilOLD |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2111 〈cop 4562 + caddc 10757 · cmul 10759 abscabs 14822 CPreHilOLDccphlo 28917 CBanccbn 28967 CHilOLDchlo 28990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-er 8412 df-map 8531 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-ioo 12964 df-ico 12966 df-icc 12967 df-fz 13121 df-fzo 13264 df-seq 13600 df-exp 13661 df-hash 13922 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-cn 22148 df-cnp 22149 df-haus 22236 df-cmp 22308 df-tx 22483 df-hmeo 22676 df-fil 22767 df-flim 22860 df-fcls 22862 df-xms 23242 df-ms 23243 df-tms 23244 df-cncf 23799 df-cfil 24176 df-cmet 24178 df-grpo 28598 df-gid 28599 df-ginv 28600 df-gdiv 28601 df-ablo 28650 df-vc 28664 df-nv 28697 df-va 28700 df-ba 28701 df-sm 28702 df-0v 28703 df-vs 28704 df-nmcv 28705 df-ims 28706 df-ph 28918 df-cbn 28968 df-hlo 28991 |
This theorem is referenced by: htth 29023 |
Copyright terms: Public domain | W3C validator |