MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlph Structured version   Visualization version   GIF version

Theorem hlph 30180
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlph (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)

Proof of Theorem hlph
StepHypRef Expression
1 ishlo 30178 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simprbi 497 1 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  CPreHilOLDccphlo 30103  CBanccbn 30153  CHilOLDchlo 30176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-hlo 30177
This theorem is referenced by:  hlpar2  30187  hlpar  30188  hlipdir  30203  hlipass  30204  htthlem  30208
  Copyright terms: Public domain W3C validator