MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlph Structured version   Visualization version   GIF version

Theorem hlph 30824
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlph (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)

Proof of Theorem hlph
StepHypRef Expression
1 ishlo 30822 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simprbi 496 1 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CPreHilOLDccphlo 30747  CBanccbn 30797  CHilOLDchlo 30820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3923  df-hlo 30821
This theorem is referenced by:  hlpar2  30831  hlpar  30832  hlipdir  30847  hlipass  30848  htthlem  30852
  Copyright terms: Public domain W3C validator