![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlph | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlph | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlo 30178 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 CPreHilOLDccphlo 30103 CBanccbn 30153 CHilOLDchlo 30176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-hlo 30177 |
This theorem is referenced by: hlpar2 30187 hlpar 30188 hlipdir 30203 hlipass 30204 htthlem 30208 |
Copyright terms: Public domain | W3C validator |