Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlph | Structured version Visualization version GIF version |
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlph | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlo 29228 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 CPreHilOLDccphlo 29153 CBanccbn 29203 CHilOLDchlo 29226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-hlo 29227 |
This theorem is referenced by: hlpar2 29237 hlpar 29238 hlipdir 29253 hlipass 29254 htthlem 29258 |
Copyright terms: Public domain | W3C validator |