| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlph | Structured version Visualization version GIF version | ||
| Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlph | ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlo 30862 | . 2 ⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 CPreHilOLDccphlo 30787 CBanccbn 30837 CHilOLDchlo 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-hlo 30861 |
| This theorem is referenced by: hlpar2 30871 hlpar 30872 hlipdir 30887 hlipass 30888 htthlem 30892 |
| Copyright terms: Public domain | W3C validator |