MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlph Structured version   Visualization version   GIF version

Theorem hlph 30871
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlph (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)

Proof of Theorem hlph
StepHypRef Expression
1 ishlo 30869 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simprbi 496 1 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  CPreHilOLDccphlo 30794  CBanccbn 30844  CHilOLDchlo 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-hlo 30868
This theorem is referenced by:  hlpar2  30878  hlpar  30879  hlipdir  30894  hlipass  30895  htthlem  30899
  Copyright terms: Public domain W3C validator