MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlph Structured version   Visualization version   GIF version

Theorem hlph 29230
Description: Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hlph (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)

Proof of Theorem hlph
StepHypRef Expression
1 ishlo 29228 . 2 (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD))
21simprbi 496 1 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  CPreHilOLDccphlo 29153  CBanccbn 29203  CHilOLDchlo 29226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-hlo 29227
This theorem is referenced by:  hlpar2  29237  hlpar  29238  hlipdir  29253  hlipass  29254  htthlem  29258
  Copyright terms: Public domain W3C validator