| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version | ||
| Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39212 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18397 OPcops 39172 OLcol 39174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ol 39178 |
| This theorem is referenced by: oldmm1 39217 oldmj1 39221 olj01 39225 olj02 39226 olm12 39228 latmassOLD 39229 latm12 39230 latm32 39231 latmrot 39232 latm4 39233 latmmdiN 39234 latmmdir 39235 olm01 39236 olm02 39237 omllat 39242 meetat 39296 |
| Copyright terms: Public domain | W3C validator |