| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version | ||
| Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39235 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18446 OPcops 39195 OLcol 39197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-ol 39201 |
| This theorem is referenced by: oldmm1 39240 oldmj1 39244 olj01 39248 olj02 39249 olm12 39251 latmassOLD 39252 latm12 39253 latm32 39254 latmrot 39255 latm4 39256 latmmdiN 39257 latmmdir 39258 olm01 39259 olm02 39260 omllat 39265 meetat 39319 |
| Copyright terms: Public domain | W3C validator |