Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ollat Structured version   Visualization version   GIF version

Theorem ollat 39236
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
ollat (𝐾 ∈ OL → 𝐾 ∈ Lat)

Proof of Theorem ollat
StepHypRef Expression
1 isolat 39235 . 2 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
21simplbi 497 1 (𝐾 ∈ OL → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Latclat 18446  OPcops 39195  OLcol 39197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938  df-ol 39201
This theorem is referenced by:  oldmm1  39240  oldmj1  39244  olj01  39248  olj02  39249  olm12  39251  latmassOLD  39252  latm12  39253  latm32  39254  latmrot  39255  latm4  39256  latmmdiN  39257  latmmdir  39258  olm01  39259  olm02  39260  omllat  39265  meetat  39319
  Copyright terms: Public domain W3C validator