![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version |
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 35368 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simplbi 493 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Latclat 17431 OPcops 35328 OLcol 35330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-in 3799 df-ol 35334 |
This theorem is referenced by: oldmm1 35373 oldmj1 35377 olj01 35381 olj02 35382 olm12 35384 latmassOLD 35385 latm12 35386 latm32 35387 latmrot 35388 latm4 35389 latmmdiN 35390 latmmdir 35391 olm01 35392 olm02 35393 omllat 35398 meetat 35452 |
Copyright terms: Public domain | W3C validator |