Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ollat Structured version   Visualization version   GIF version

Theorem ollat 38083
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
ollat (𝐾 ∈ OL → 𝐾 ∈ Lat)

Proof of Theorem ollat
StepHypRef Expression
1 isolat 38082 . 2 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
21simplbi 499 1 (𝐾 ∈ OL → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Latclat 18384  OPcops 38042  OLcol 38044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ol 38048
This theorem is referenced by:  oldmm1  38087  oldmj1  38091  olj01  38095  olj02  38096  olm12  38098  latmassOLD  38099  latm12  38100  latm32  38101  latmrot  38102  latm4  38103  latmmdiN  38104  latmmdir  38105  olm01  38106  olm02  38107  omllat  38112  meetat  38166
  Copyright terms: Public domain W3C validator