| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version | ||
| Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39205 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18390 OPcops 39165 OLcol 39167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ol 39171 |
| This theorem is referenced by: oldmm1 39210 oldmj1 39214 olj01 39218 olj02 39219 olm12 39221 latmassOLD 39222 latm12 39223 latm32 39224 latmrot 39225 latm4 39226 latmmdiN 39227 latmmdir 39228 olm01 39229 olm02 39230 omllat 39235 meetat 39289 |
| Copyright terms: Public domain | W3C validator |