Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ollat Structured version   Visualization version   GIF version

Theorem ollat 39385
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
ollat (𝐾 ∈ OL → 𝐾 ∈ Lat)

Proof of Theorem ollat
StepHypRef Expression
1 isolat 39384 . 2 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
21simplbi 497 1 (𝐾 ∈ OL → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Latclat 18345  OPcops 39344  OLcol 39346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-ol 39350
This theorem is referenced by:  oldmm1  39389  oldmj1  39393  olj01  39397  olj02  39398  olm12  39400  latmassOLD  39401  latm12  39402  latm32  39403  latmrot  39404  latm4  39405  latmmdiN  39406  latmmdir  39407  olm01  39408  olm02  39409  omllat  39414  meetat  39468
  Copyright terms: Public domain W3C validator