Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ollat Structured version   Visualization version   GIF version

Theorem ollat 37227
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
ollat (𝐾 ∈ OL → 𝐾 ∈ Lat)

Proof of Theorem ollat
StepHypRef Expression
1 isolat 37226 . 2 (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP))
21simplbi 498 1 (𝐾 ∈ OL → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Latclat 18149  OPcops 37186  OLcol 37188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ol 37192
This theorem is referenced by:  oldmm1  37231  oldmj1  37235  olj01  37239  olj02  37240  olm12  37242  latmassOLD  37243  latm12  37244  latm32  37245  latmrot  37246  latm4  37247  latmmdiN  37248  latmmdir  37249  olm01  37250  olm02  37251  omllat  37256  meetat  37310
  Copyright terms: Public domain W3C validator