| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version | ||
| Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39384 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Latclat 18345 OPcops 39344 OLcol 39346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ol 39350 |
| This theorem is referenced by: oldmm1 39389 oldmj1 39393 olj01 39397 olj02 39398 olm12 39400 latmassOLD 39401 latm12 39402 latm32 39403 latmrot 39404 latm4 39405 latmmdiN 39406 latmmdir 39407 olm01 39408 olm02 39409 omllat 39414 meetat 39468 |
| Copyright terms: Public domain | W3C validator |