| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version | ||
| Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39251 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Latclat 18332 OPcops 39211 OLcol 39213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ol 39217 |
| This theorem is referenced by: oldmm1 39256 oldmj1 39260 olj01 39264 olj02 39265 olm12 39267 latmassOLD 39268 latm12 39269 latm32 39270 latmrot 39271 latm4 39272 latmmdiN 39273 latmmdir 39274 olm01 39275 olm02 39276 omllat 39281 meetat 39335 |
| Copyright terms: Public domain | W3C validator |