Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ollat | Structured version Visualization version GIF version |
Description: An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
ollat | ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 37153 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18064 OPcops 37113 OLcol 37115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ol 37119 |
This theorem is referenced by: oldmm1 37158 oldmj1 37162 olj01 37166 olj02 37167 olm12 37169 latmassOLD 37170 latm12 37171 latm32 37172 latmrot 37173 latm4 37174 latmmdiN 37175 latmmdir 37176 olm01 37177 olm02 37178 omllat 37183 meetat 37237 |
Copyright terms: Public domain | W3C validator |