![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version |
Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 39168 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18501 OPcops 39128 OLcol 39130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ol 39134 |
This theorem is referenced by: olposN 39171 oldmm1 39173 oldmm2 39174 oldmm3N 39175 oldmm4 39176 oldmj1 39177 oldmj2 39178 oldmj3 39179 oldmj4 39180 olj01 39181 olj02 39182 olm11 39183 olm12 39184 latmassOLD 39185 olm01 39192 olm02 39193 omlop 39197 meetat 39252 hlop 39318 polatN 39888 |
Copyright terms: Public domain | W3C validator |