| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version | ||
| Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39198 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18372 OPcops 39158 OLcol 39160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ol 39164 |
| This theorem is referenced by: olposN 39201 oldmm1 39203 oldmm2 39204 oldmm3N 39205 oldmm4 39206 oldmj1 39207 oldmj2 39208 oldmj3 39209 oldmj4 39210 olj01 39211 olj02 39212 olm11 39213 olm12 39214 latmassOLD 39215 olm01 39222 olm02 39223 omlop 39227 meetat 39282 hlop 39348 polatN 39918 |
| Copyright terms: Public domain | W3C validator |