Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version |
Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 37222 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Latclat 18147 OPcops 37182 OLcol 37184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ol 37188 |
This theorem is referenced by: olposN 37225 oldmm1 37227 oldmm2 37228 oldmm3N 37229 oldmm4 37230 oldmj1 37231 oldmj2 37232 oldmj3 37233 oldmj4 37234 olj01 37235 olj02 37236 olm11 37237 olm12 37238 latmassOLD 37239 olm01 37246 olm02 37247 omlop 37251 meetat 37306 hlop 37372 polatN 37941 |
Copyright terms: Public domain | W3C validator |