| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version | ||
| Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39212 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18397 OPcops 39172 OLcol 39174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ol 39178 |
| This theorem is referenced by: olposN 39215 oldmm1 39217 oldmm2 39218 oldmm3N 39219 oldmm4 39220 oldmj1 39221 oldmj2 39222 oldmj3 39223 oldmj4 39224 olj01 39225 olj02 39226 olm11 39227 olm12 39228 latmassOLD 39229 olm01 39236 olm02 39237 omlop 39241 meetat 39296 hlop 39362 polatN 39932 |
| Copyright terms: Public domain | W3C validator |