| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version | ||
| Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39176 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18439 OPcops 39136 OLcol 39138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ol 39142 |
| This theorem is referenced by: olposN 39179 oldmm1 39181 oldmm2 39182 oldmm3N 39183 oldmm4 39184 oldmj1 39185 oldmj2 39186 oldmj3 39187 oldmj4 39188 olj01 39189 olj02 39190 olm11 39191 olm12 39192 latmassOLD 39193 olm01 39200 olm02 39201 omlop 39205 meetat 39260 hlop 39326 polatN 39896 |
| Copyright terms: Public domain | W3C validator |