| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version | ||
| Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isolat 39205 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Latclat 18390 OPcops 39165 OLcol 39167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ol 39171 |
| This theorem is referenced by: olposN 39208 oldmm1 39210 oldmm2 39211 oldmm3N 39212 oldmm4 39213 oldmj1 39214 oldmj2 39215 oldmj3 39216 oldmj4 39217 olj01 39218 olj02 39219 olm11 39220 olm12 39221 latmassOLD 39222 olm01 39229 olm02 39230 omlop 39234 meetat 39289 hlop 39355 polatN 39925 |
| Copyright terms: Public domain | W3C validator |