Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version |
Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 37226 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Latclat 18149 OPcops 37186 OLcol 37188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ol 37192 |
This theorem is referenced by: olposN 37229 oldmm1 37231 oldmm2 37232 oldmm3N 37233 oldmm4 37234 oldmj1 37235 oldmj2 37236 oldmj3 37237 oldmj4 37238 olj01 37239 olj02 37240 olm11 37241 olm12 37242 latmassOLD 37243 olm01 37250 olm02 37251 omlop 37255 meetat 37310 hlop 37376 polatN 37945 |
Copyright terms: Public domain | W3C validator |