Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olop | Structured version Visualization version GIF version |
Description: An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
olop | ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isolat 37153 | . 2 ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18064 OPcops 37113 OLcol 37115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ol 37119 |
This theorem is referenced by: olposN 37156 oldmm1 37158 oldmm2 37159 oldmm3N 37160 oldmm4 37161 oldmj1 37162 oldmj2 37163 oldmj3 37164 oldmj4 37165 olj01 37166 olj02 37167 olm11 37168 olm12 37169 latmassOLD 37170 olm01 37177 olm02 37178 omlop 37182 meetat 37237 hlop 37303 polatN 37872 |
Copyright terms: Public domain | W3C validator |