Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtvalN Structured version   Visualization version   GIF version

Theorem cmtvalN 39167
Description: Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 31616 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtvalN ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtvalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmtfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cmtfval.j . . . . . 6 = (join‘𝐾)
3 cmtfval.m . . . . . 6 = (meet‘𝐾)
4 cmtfval.o . . . . . 6 = (oc‘𝐾)
5 cmtfval.c . . . . . 6 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtfvalN 39166 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
7 df-3an 1089 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
87opabbii 5233 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
96, 8eqtrdi 2796 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
109breqd 5177 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
11103ad2ant1 1133 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
12 df-br 5167 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
13 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
14 oveq1 7455 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
15 oveq1 7455 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ( 𝑦)) = (𝑋 ( 𝑦)))
1614, 15oveq12d 7466 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) (𝑥 ( 𝑦))) = ((𝑋 𝑦) (𝑋 ( 𝑦))))
1713, 16eqeq12d 2756 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦)))))
18 oveq2 7456 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
19 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2019oveq2d 7464 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 ( 𝑦)) = (𝑋 ( 𝑌)))
2118, 20oveq12d 7466 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) (𝑋 ( 𝑦))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
2221eqeq2d 2751 . . . . 5 (𝑦 = 𝑌 → (𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2317, 22opelopab2 5560 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2412, 23bitrid 283 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
25243adant1 1130 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2611, 25bitrd 279 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  {copab 5228  cfv 6573  (class class class)co 7448  Basecbs 17258  occoc 17319  joincjn 18381  meetcmee 18382  cmccmtN 39129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-cmtN 39133
This theorem is referenced by:  cmtcomlemN  39204  cmt2N  39206  cmtbr2N  39209  cmtbr3N  39210
  Copyright terms: Public domain W3C validator