Step | Hyp | Ref
| Expression |
1 | | cmtfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
2 | | cmtfval.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
3 | | cmtfval.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
4 | | cmtfval.o |
. . . . . 6
⊢ ⊥ =
(oc‘𝐾) |
5 | | cmtfval.c |
. . . . . 6
⊢ 𝐶 = (cm‘𝐾) |
6 | 1, 2, 3, 4, 5 | cmtfvalN 37151 |
. . . . 5
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
7 | | df-3an 1087 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))) |
8 | 7 | opabbii 5137 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} |
9 | 6, 8 | eqtrdi 2795 |
. . . 4
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
10 | 9 | breqd 5081 |
. . 3
⊢ (𝐾 ∈ 𝐴 → (𝑋𝐶𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}𝑌)) |
11 | 10 | 3ad2ant1 1131 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}𝑌)) |
12 | | df-br 5071 |
. . . 4
⊢ (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
13 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
14 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∧ 𝑦) = (𝑋 ∧ 𝑦)) |
15 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑥 ∧ ( ⊥ ‘𝑦)) = (𝑋 ∧ ( ⊥ ‘𝑦))) |
16 | 14, 15 | oveq12d 7273 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ ( ⊥ ‘𝑦)))) |
17 | 13, 16 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))) ↔ 𝑋 = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ ( ⊥ ‘𝑦))))) |
18 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑋 ∧ 𝑦) = (𝑋 ∧ 𝑌)) |
19 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → ( ⊥ ‘𝑦) = ( ⊥ ‘𝑌)) |
20 | 19 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑋 ∧ ( ⊥ ‘𝑦)) = (𝑋 ∧ ( ⊥ ‘𝑌))) |
21 | 18, 20 | oveq12d 7273 |
. . . . . 6
⊢ (𝑦 = 𝑌 → ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ ( ⊥ ‘𝑦))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
22 | 21 | eqeq2d 2749 |
. . . . 5
⊢ (𝑦 = 𝑌 → (𝑋 = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ ( ⊥ ‘𝑦))) ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
23 | 17, 22 | opelopab2 5447 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
24 | 12, 23 | syl5bb 282 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
25 | 24 | 3adant1 1128 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
26 | 11, 25 | bitrd 278 |
1
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |