Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtvalN Structured version   Visualization version   GIF version

Theorem cmtvalN 37152
Description: Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 29847 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtvalN ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtvalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmtfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cmtfval.j . . . . . 6 = (join‘𝐾)
3 cmtfval.m . . . . . 6 = (meet‘𝐾)
4 cmtfval.o . . . . . 6 = (oc‘𝐾)
5 cmtfval.c . . . . . 6 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtfvalN 37151 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
7 df-3an 1087 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
87opabbii 5137 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
96, 8eqtrdi 2795 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
109breqd 5081 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
11103ad2ant1 1131 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
12 df-br 5071 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
13 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
14 oveq1 7262 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
15 oveq1 7262 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ( 𝑦)) = (𝑋 ( 𝑦)))
1614, 15oveq12d 7273 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) (𝑥 ( 𝑦))) = ((𝑋 𝑦) (𝑋 ( 𝑦))))
1713, 16eqeq12d 2754 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦)))))
18 oveq2 7263 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
19 fveq2 6756 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2019oveq2d 7271 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 ( 𝑦)) = (𝑋 ( 𝑌)))
2118, 20oveq12d 7273 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) (𝑋 ( 𝑦))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
2221eqeq2d 2749 . . . . 5 (𝑦 = 𝑌 → (𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2317, 22opelopab2 5447 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2412, 23syl5bb 282 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
25243adant1 1128 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2611, 25bitrd 278 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  {copab 5132  cfv 6418  (class class class)co 7255  Basecbs 16840  occoc 16896  joincjn 17944  meetcmee 17945  cmccmtN 37114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-cmtN 37118
This theorem is referenced by:  cmtcomlemN  37189  cmt2N  37191  cmtbr2N  37194  cmtbr3N  37195
  Copyright terms: Public domain W3C validator