Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtvalN Structured version   Visualization version   GIF version

Theorem cmtvalN 37450
Description: Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 30078 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtvalN ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))

Proof of Theorem cmtvalN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmtfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cmtfval.j . . . . . 6 = (join‘𝐾)
3 cmtfval.m . . . . . 6 = (meet‘𝐾)
4 cmtfval.o . . . . . 6 = (oc‘𝐾)
5 cmtfval.c . . . . . 6 𝐶 = (cm‘𝐾)
61, 2, 3, 4, 5cmtfvalN 37449 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
7 df-3an 1088 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
87opabbii 5153 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
96, 8eqtrdi 2792 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
109breqd 5097 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
11103ad2ant1 1132 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌))
12 df-br 5087 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
13 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
14 oveq1 7323 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
15 oveq1 7323 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ( 𝑦)) = (𝑋 ( 𝑦)))
1614, 15oveq12d 7334 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) (𝑥 ( 𝑦))) = ((𝑋 𝑦) (𝑋 ( 𝑦))))
1713, 16eqeq12d 2752 . . . . 5 (𝑥 = 𝑋 → (𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦)))))
18 oveq2 7324 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
19 fveq2 6811 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2019oveq2d 7332 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 ( 𝑦)) = (𝑋 ( 𝑌)))
2118, 20oveq12d 7334 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) (𝑋 ( 𝑦))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
2221eqeq2d 2747 . . . . 5 (𝑦 = 𝑌 → (𝑋 = ((𝑋 𝑦) (𝑋 ( 𝑦))) ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2317, 22opelopab2 5473 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ↔ 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2412, 23bitrid 282 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
25243adant1 1129 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
2611, 25bitrd 278 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cop 4576   class class class wbr 5086  {copab 5148  cfv 6465  (class class class)co 7316  Basecbs 16986  occoc 17044  joincjn 18103  meetcmee 18104  cmccmtN 37412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-iota 6417  df-fun 6467  df-fv 6473  df-ov 7319  df-cmtN 37416
This theorem is referenced by:  cmtcomlemN  37487  cmt2N  37489  cmtbr2N  37492  cmtbr3N  37493
  Copyright terms: Public domain W3C validator