MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vextru Structured version   Visualization version   GIF version

Theorem vextru 2715
Description: Every setvar is a member of {𝑥 ∣ ⊤}, which is therefore "a" universal class. Once class extensionality dfcleq 2723 is available, we can say "the" universal class (see df-v 3452). This is sbtru 2068 expressed using class abstractions. (Contributed by BJ, 2-Sep-2023.)
Assertion
Ref Expression
vextru 𝑦 ∈ {𝑥 ∣ ⊤}

Proof of Theorem vextru
StepHypRef Expression
1 tru 1544 . 2
21vexw 2714 1 𝑦 ∈ {𝑥 ∣ ⊤}
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-tru 1543  df-sb 2066  df-clab 2709
This theorem is referenced by:  issettru  2807  vex  3454  abv  3462  ab0orv  4349  bj-denoteslem  36866  bj-vjust  37050
  Copyright terms: Public domain W3C validator