MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr2 Structured version   Visualization version   GIF version

Theorem sotr2 5626
Description: A transitivity relation. (Read 𝐵𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
sotr2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr2
StepHypRef Expression
1 sotric 5622 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
21ancom2s 648 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
323adantr3 1168 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
43con2bid 353 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵))
5 breq1 5156 . . . . . 6 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
65biimpd 228 . . . . 5 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
76a1i 11 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
8 sotr 5618 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
98expd 414 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
107, 9jaod 857 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) → (𝐶𝑅𝐷𝐵𝑅𝐷)))
114, 10sylbird 259 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (¬ 𝐶𝑅𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
1211impd 409 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153   Or wor 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-po 5594  df-so 5595
This theorem is referenced by:  nosupbnd1  27744  noinfbnd2  27761  slelttr  27787  erdszelem8  35026
  Copyright terms: Public domain W3C validator