![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotr2 | Structured version Visualization version GIF version |
Description: A transitivity relation. (Read 𝐵 ≤ 𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
sotr2 | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((¬ 𝐶𝑅𝐵 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotric 5607 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) | |
2 | 1 | ancom2s 647 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
3 | 2 | 3adantr3 1168 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
4 | 3 | con2bid 354 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵)) |
5 | breq1 5142 | . . . . . 6 ⊢ (𝐶 = 𝐵 → (𝐶𝑅𝐷 ↔ 𝐵𝑅𝐷)) | |
6 | 5 | biimpd 228 | . . . . 5 ⊢ (𝐶 = 𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 = 𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
8 | sotr 5603 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | |
9 | 8 | expd 415 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵𝑅𝐶 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
10 | 7, 9 | jaod 856 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
11 | 4, 10 | sylbird 260 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐶𝑅𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
12 | 11 | impd 410 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((¬ 𝐶𝑅𝐵 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 Or wor 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-po 5579 df-so 5580 |
This theorem is referenced by: nosupbnd1 27587 noinfbnd2 27604 slelttr 27630 erdszelem8 34706 |
Copyright terms: Public domain | W3C validator |