MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotr2 Structured version   Visualization version   GIF version

Theorem sotr2 5526
Description: A transitivity relation. (Read 𝐵𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
sotr2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))

Proof of Theorem sotr2
StepHypRef Expression
1 sotric 5522 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
21ancom2s 646 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
323adantr3 1169 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
43con2bid 354 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵))
5 breq1 5073 . . . . . 6 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
65biimpd 228 . . . . 5 (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷))
76a1i 11 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
8 sotr 5518 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐷) → 𝐵𝑅𝐷))
98expd 415 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
107, 9jaod 855 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((𝐶 = 𝐵𝐵𝑅𝐶) → (𝐶𝑅𝐷𝐵𝑅𝐷)))
114, 10sylbird 259 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (¬ 𝐶𝑅𝐵 → (𝐶𝑅𝐷𝐵𝑅𝐷)))
1211impd 410 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → ((¬ 𝐶𝑅𝐵𝐶𝑅𝐷) → 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-po 5494  df-so 5495
This theorem is referenced by:  erdszelem8  33060  nosupbnd1  33844  noinfbnd2  33861  slelttr  33887
  Copyright terms: Public domain W3C validator