![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotr2 | Structured version Visualization version GIF version |
Description: A transitivity relation. (Read 𝐵 ≤ 𝐶 and 𝐶 < 𝐷 implies 𝐵 < 𝐷.) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
sotr2 | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((¬ 𝐶𝑅𝐵 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotric 5574 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) | |
2 | 1 | ancom2s 649 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
3 | 2 | 3adantr3 1172 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
4 | 3 | con2bid 355 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵)) |
5 | breq1 5109 | . . . . . 6 ⊢ (𝐶 = 𝐵 → (𝐶𝑅𝐷 ↔ 𝐵𝑅𝐷)) | |
6 | 5 | biimpd 228 | . . . . 5 ⊢ (𝐶 = 𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷)) |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 = 𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
8 | sotr 5570 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) | |
9 | 8 | expd 417 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵𝑅𝐶 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
10 | 7, 9 | jaod 858 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
11 | 4, 10 | sylbird 260 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐶𝑅𝐵 → (𝐶𝑅𝐷 → 𝐵𝑅𝐷))) |
12 | 11 | impd 412 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((¬ 𝐶𝑅𝐵 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 Or wor 5545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-po 5546 df-so 5547 |
This theorem is referenced by: nosupbnd1 27065 noinfbnd2 27082 slelttr 27108 erdszelem8 33795 |
Copyright terms: Public domain | W3C validator |