![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swoso | Structured version Visualization version GIF version |
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
swoer.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) |
swoer.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) |
swoso.4 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
swoso.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
swoso | ⊢ (𝜑 → < Or 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swoso.4 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
2 | swoer.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) | |
3 | swoer.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
4 | 2, 3 | swopo 5619 | . . 3 ⊢ (𝜑 → < Po 𝑋) |
5 | poss 5609 | . . 3 ⊢ (𝑌 ⊆ 𝑋 → ( < Po 𝑋 → < Po 𝑌)) | |
6 | 1, 4, 5 | sylc 65 | . 2 ⊢ (𝜑 → < Po 𝑌) |
7 | 1 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
8 | 1 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
9 | 7, 8 | anim12dan 618 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
10 | swoer.1 | . . . . . . 7 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
11 | 10 | brdifun 8793 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
13 | df-3an 1089 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) | |
14 | swoso.5 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) | |
15 | 13, 14 | sylan2br 594 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
16 | 15 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
17 | 12, 16 | sylbird 260 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
18 | 17 | orrd 862 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
19 | 3orcomb 1094 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
20 | df-3or 1088 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) | |
21 | 19, 20 | bitri 275 | . . 3 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
22 | 18, 21 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
23 | 6, 22 | issod 5642 | 1 ⊢ (𝜑 → < Or 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 class class class wbr 5166 Po wpo 5605 Or wor 5606 × cxp 5698 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-xp 5706 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |