| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swoso | Structured version Visualization version GIF version | ||
| Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
| swoer.2 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) |
| swoer.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) |
| swoso.4 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| swoso.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| swoso | ⊢ (𝜑 → < Or 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoso.4 | . . 3 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 2 | swoer.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) | |
| 3 | swoer.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) | |
| 4 | 2, 3 | swopo 5577 | . . 3 ⊢ (𝜑 → < Po 𝑋) |
| 5 | poss 5568 | . . 3 ⊢ (𝑌 ⊆ 𝑋 → ( < Po 𝑋 → < Po 𝑌)) | |
| 6 | 1, 4, 5 | sylc 65 | . 2 ⊢ (𝜑 → < Po 𝑌) |
| 7 | 1 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 8 | 1 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
| 9 | 7, 8 | anim12dan 619 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
| 10 | swoer.1 | . . . . . . 7 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
| 11 | 10 | brdifun 8754 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
| 12 | 9, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
| 13 | df-3an 1088 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦) ↔ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) | |
| 14 | swoso.5 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) | |
| 15 | 13, 14 | sylan2br 595 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) |
| 16 | 15 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑅𝑦 → 𝑥 = 𝑦)) |
| 17 | 12, 16 | sylbird 260 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (¬ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥) → 𝑥 = 𝑦)) |
| 18 | 17 | orrd 863 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
| 19 | 3orcomb 1093 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
| 20 | df-3or 1087 | . . . 4 ⊢ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) | |
| 21 | 19, 20 | bitri 275 | . . 3 ⊢ ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ((𝑥 < 𝑦 ∨ 𝑦 < 𝑥) ∨ 𝑥 = 𝑦)) |
| 22 | 18, 21 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 23 | 6, 22 | issod 5601 | 1 ⊢ (𝜑 → < Or 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 class class class wbr 5124 Po wpo 5564 Or wor 5565 × cxp 5657 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-po 5566 df-so 5567 df-xp 5665 df-cnv 5667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |