Step | Hyp | Ref
| Expression |
1 | | simplll 772 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → 𝐴 ∈ FinII) |
2 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝑥 |
3 | | sstr 3929 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝐴) |
4 | 2, 3 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ⊆ 𝐴 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝐴) |
5 | | elpw2g 5268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ FinII →
({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴 ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝐴)) |
6 | 5 | biimpar 478 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ FinII ∧
{𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ⊆ 𝐴) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴) |
7 | 4, 6 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ FinII ∧
𝑥 ⊆ 𝐴) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ FinII ∧
𝑥 ⊆ 𝐴) → ∀𝑣 ∈ 𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴) |
9 | | vex 3436 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑥 ∈ V |
10 | 9 | rabex 5256 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ V |
11 | 10 | rgenw 3076 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑣 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ V |
12 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) |
13 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → (𝑦 ∈ 𝒫 𝐴 ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴)) |
14 | 12, 13 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑣 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣 ∈ 𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴)) |
15 | 11, 14 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴 ↔ ∀𝑣 ∈ 𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ 𝒫 𝐴) |
16 | 8, 15 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ FinII ∧
𝑥 ⊆ 𝐴) → ∀𝑦 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴) |
17 | | dfss3 3909 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ⊆ 𝒫 𝐴 ↔ ∀𝑦 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑦 ∈ 𝒫 𝐴) |
18 | 16, 17 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ FinII ∧
𝑥 ⊆ 𝐴) → ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) |
19 | 18 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) → ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) |
20 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) |
21 | 10, 12 | dmmpti 6577 |
. . . . . . . . . . . . . . 15
⊢ dom
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = 𝑥 |
22 | 21 | neeq1i 3008 |
. . . . . . . . . . . . . 14
⊢ (dom
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅ ↔ 𝑥 ≠ ∅) |
23 | | dm0rn0 5834 |
. . . . . . . . . . . . . . 15
⊢ (dom
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = ∅ ↔ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = ∅) |
24 | 23 | necon3bii 2996 |
. . . . . . . . . . . . . 14
⊢ (dom
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅ ↔ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅) |
25 | 22, 24 | sylbb1 236 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ ∅ → ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅) |
26 | 25 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅) |
27 | | soss 5523 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝐴 → (𝑅 Or 𝐴 → 𝑅 Or 𝑥)) |
28 | 27 | impcom 408 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) → 𝑅 Or 𝑥) |
29 | | porpss 7580 |
. . . . . . . . . . . . . . . . 17
⊢
[⊊] Po ran (𝑣
∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Or 𝑥 → [⊊] Po ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
31 | | solin 5528 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → (𝑣𝑅𝑦 ∨ 𝑣 = 𝑦 ∨ 𝑦𝑅𝑣)) |
32 | | fin2solem 35763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → (𝑣𝑅𝑦 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
33 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = 𝑦 → (𝑤𝑅𝑣 ↔ 𝑤𝑅𝑦)) |
34 | 33 | rabbidv 3414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 𝑦 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → (𝑣 = 𝑦 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
36 | | fin2solem 35763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥)) → (𝑦𝑅𝑣 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
37 | 36 | ancom2s 647 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → (𝑦𝑅𝑣 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
38 | 32, 35, 37 | 3orim123d 1443 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → ((𝑣𝑅𝑦 ∨ 𝑣 = 𝑦 ∨ 𝑦𝑅𝑣) → ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) |
39 | 31, 38 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 Or 𝑥 ∧ (𝑣 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥)) → ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
40 | 39 | ralrimivva 3123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 Or 𝑥 → ∀𝑣 ∈ 𝑥 ∀𝑦 ∈ 𝑥 ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
41 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
42 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
43 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢 ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
44 | 41, 42, 43 | 3orbi123d 1434 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → ((𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢) ↔ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) |
45 | 44 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → (∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢) ↔ ∀𝑦 ∈ 𝑥 ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) |
46 | 12, 45 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑣 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ V → (∀𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢) ↔ ∀𝑣 ∈ 𝑥 ∀𝑦 ∈ 𝑥 ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) |
47 | 11, 46 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑢 ∈
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢) ↔ ∀𝑣 ∈ 𝑥 ∀𝑦 ∈ 𝑥 ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
48 | 40, 47 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 Or 𝑥 → ∀𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢)) |
49 | 48 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 Or 𝑥 ∧ 𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) → ∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢)) |
50 | 9 | rabex 5256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∈ V |
51 | 50 | rgenw 3076 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑦 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∈ V |
52 | 34 | cbvmptv 5187 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = (𝑦 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
53 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → (𝑢 [⊊] 𝑧 ↔ 𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
54 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → (𝑢 = 𝑧 ↔ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
55 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → (𝑧 [⊊] 𝑢 ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢)) |
56 | 53, 54, 55 | 3orbi123d 1434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ((𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢) ↔ (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢))) |
57 | 52, 56 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑦 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∈ V → (∀𝑧 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})(𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢) ↔ ∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢))) |
58 | 51, 57 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑧 ∈
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})(𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢) ↔ ∀𝑦 ∈ 𝑥 (𝑢 [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ 𝑢 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ∨ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] 𝑢)) |
59 | 49, 58 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 Or 𝑥 ∧ 𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) → ∀𝑧 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})(𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢)) |
60 | 59 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 Or 𝑥 ∧ 𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) ∧ 𝑧 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) → (𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢)) |
61 | 60 | anasss 467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 Or 𝑥 ∧ (𝑢 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ∧ 𝑧 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) → (𝑢 [⊊] 𝑧 ∨ 𝑢 = 𝑧 ∨ 𝑧 [⊊] 𝑢)) |
62 | 30, 61 | issod 5536 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 Or 𝑥 → [⊊] Or ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
63 | 28, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) → [⊊] Or ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
64 | 63 | adantll 711 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) → [⊊] Or ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
65 | 64 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → [⊊] Or
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
66 | | fin2i2 10074 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ FinII ∧
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ⊆ 𝒫 𝐴) ∧ (ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ≠ ∅ ∧ [⊊] Or
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}))) → ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
67 | 1, 20, 26, 65, 66 | syl22anc 836 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
68 | 52, 50 | elrnmpti 5869 |
. . . . . . . . . . 11
⊢ (∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ↔ ∃𝑦 ∈ 𝑥 ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
69 | 67, 68 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
70 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝐴) |
71 | | sonr 5526 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 Or 𝐴 ∧ 𝑧 ∈ 𝐴) → ¬ 𝑧𝑅𝑧) |
72 | 70, 71 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑥)) → ¬ 𝑧𝑅𝑧) |
73 | 72 | anassrs 468 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑧 ∈ 𝑥) → ¬ 𝑧𝑅𝑧) |
74 | 73 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → ¬ 𝑧𝑅𝑧) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑧) |
76 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑧 → (𝑤𝑅𝑦 ↔ 𝑧𝑅𝑦)) |
77 | 76 | elrab 3624 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ↔ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑦)) |
78 | 77 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → (𝑧𝑅𝑦 → 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
79 | 78 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → (𝑧𝑅𝑦 → 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
80 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑧 ∈ V |
81 | 80 | elint2 4886 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ↔ ∀𝑦 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑧 ∈ 𝑦) |
82 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
83 | 12, 82 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑣 ∈
𝑥 {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑧 ∈ 𝑦 ↔ ∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})) |
84 | 11, 83 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣})𝑧 ∈ 𝑦 ↔ ∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) |
85 | 81, 84 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ↔ ∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) |
86 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑣 = 𝑧 → (𝑤𝑅𝑣 ↔ 𝑤𝑅𝑧)) |
87 | 86 | rabbidv 3414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
88 | 87 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑧 → (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} ↔ 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
89 | 88 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝑥 → (∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
90 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑧 → (𝑤𝑅𝑧 ↔ 𝑧𝑅𝑧)) |
91 | 90 | elrab 3624 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ (𝑧 ∈ 𝑥 ∧ 𝑧𝑅𝑧)) |
92 | 91 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} → 𝑧𝑅𝑧) |
93 | 89, 92 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → 𝑧𝑅𝑧)) |
94 | 93 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) → (∀𝑣 ∈ 𝑥 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣} → 𝑧𝑅𝑧)) |
95 | 85, 94 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) → (𝑧 ∈ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) → 𝑧𝑅𝑧)) |
96 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → (𝑧 ∈ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) ↔ 𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦})) |
97 | 96 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ((𝑧 ∈ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) → 𝑧𝑅𝑧) ↔ (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → 𝑧𝑅𝑧))) |
98 | 95, 97 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) → (∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → 𝑧𝑅𝑧))) |
99 | 98 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → (𝑧 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → 𝑧𝑅𝑧)) |
100 | 79, 99 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → (𝑧𝑅𝑦 → 𝑧𝑅𝑧)) |
101 | 100 | adantlll 715 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → (𝑧𝑅𝑦 → 𝑧𝑅𝑧)) |
102 | 75, 101 | mtod 197 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) ∧ 𝑧 ∈ 𝑥) ∧ ∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → ¬ 𝑧𝑅𝑦) |
103 | 102 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) ∧ 𝑧 ∈ 𝑥) → (∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ¬ 𝑧𝑅𝑦)) |
104 | 103 | ralrimdva 3106 |
. . . . . . . . . . . . 13
⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑦 ∈ 𝑥) → (∩ ran
(𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
105 | 104 | reximdva 3203 |
. . . . . . . . . . . 12
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 ∈ 𝑥 ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
106 | 105 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) → (∃𝑦 ∈ 𝑥 ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
107 | 106 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → (∃𝑦 ∈ 𝑥 ∩ ran (𝑣 ∈ 𝑥 ↦ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑣}) = {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
108 | 69, 107 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
109 | 108 | expl 458 |
. . . . . . . 8
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
110 | 109 | alrimiv 1930 |
. . . . . . 7
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
111 | | df-fr 5544 |
. . . . . . 7
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
112 | 110, 111 | sylibr 233 |
. . . . . 6
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → 𝑅 Fr 𝐴) |
113 | | simpr 485 |
. . . . . 6
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → 𝑅 Or 𝐴) |
114 | | df-we 5546 |
. . . . . 6
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
115 | 112, 113,
114 | sylanbrc 583 |
. . . . 5
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → 𝑅 We 𝐴) |
116 | | weinxp 5671 |
. . . . 5
⊢ (𝑅 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
117 | 115, 116 | sylib 217 |
. . . 4
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) |
118 | | sqxpexg 7605 |
. . . . . 6
⊢ (𝐴 ∈ FinII →
(𝐴 × 𝐴) ∈ V) |
119 | | incom 4135 |
. . . . . . 7
⊢ (𝑅 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝑅) |
120 | | inex1g 5243 |
. . . . . . 7
⊢ ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ 𝑅) ∈ V) |
121 | 119, 120 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝐴 × 𝐴) ∈ V → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
122 | | weeq1 5577 |
. . . . . . 7
⊢ (𝑧 = (𝑅 ∩ (𝐴 × 𝐴)) → (𝑧 We 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) We 𝐴)) |
123 | 122 | spcegv 3536 |
. . . . . 6
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴)) |
124 | 118, 121,
123 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ FinII →
((𝑅 ∩ (𝐴 × 𝐴)) We 𝐴 → ∃𝑧 𝑧 We 𝐴)) |
125 | 124 | imp 407 |
. . . 4
⊢ ((𝐴 ∈ FinII ∧
(𝑅 ∩ (𝐴 × 𝐴)) We 𝐴) → ∃𝑧 𝑧 We 𝐴) |
126 | 117, 125 | syldan 591 |
. . 3
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → ∃𝑧 𝑧 We 𝐴) |
127 | | ween 9791 |
. . 3
⊢ (𝐴 ∈ dom card ↔
∃𝑧 𝑧 We 𝐴) |
128 | 126, 127 | sylibr 233 |
. 2
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → 𝐴 ∈ dom card) |
129 | | fin23 10145 |
. . . . 5
⊢ (𝐴 ∈ FinII →
𝐴 ∈
FinIII) |
130 | | fin34 10146 |
. . . . 5
⊢ (𝐴 ∈ FinIII →
𝐴 ∈
FinIV) |
131 | | fin45 10148 |
. . . . 5
⊢ (𝐴 ∈ FinIV →
𝐴 ∈
FinV) |
132 | 129, 130,
131 | 3syl 18 |
. . . 4
⊢ (𝐴 ∈ FinII →
𝐴 ∈
FinV) |
133 | | fin56 10149 |
. . . 4
⊢ (𝐴 ∈ FinV →
𝐴 ∈
FinVI) |
134 | | fin67 10151 |
. . . 4
⊢ (𝐴 ∈ FinVI →
𝐴 ∈
FinVII) |
135 | 132, 133,
134 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ FinII →
𝐴 ∈
FinVII) |
136 | | fin71num 10153 |
. . . 4
⊢ (𝐴 ∈ dom card → (𝐴 ∈ FinVII ↔
𝐴 ∈
Fin)) |
137 | 136 | biimpac 479 |
. . 3
⊢ ((𝐴 ∈ FinVII ∧
𝐴 ∈ dom card) →
𝐴 ∈
Fin) |
138 | 135, 137 | sylan 580 |
. 2
⊢ ((𝐴 ∈ FinII ∧
𝐴 ∈ dom card) →
𝐴 ∈
Fin) |
139 | 128, 138 | syldan 591 |
1
⊢ ((𝐴 ∈ FinII ∧
𝑅 Or 𝐴) → 𝐴 ∈ Fin) |