MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12dOLD Structured version   Visualization version   GIF version

Theorem iuneq12dOLD 5024
Description: Obsolete version of iuneq12d 5025 as of 1-Sep-2025. (Contributed by Drahflow, 22-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iuneq1d.1 (𝜑𝐴 = 𝐵)
iuneq12dOLD.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12dOLD (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12dOLD
StepHypRef Expression
1 iuneq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21iuneq1d 5023 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
3 iuneq12dOLD.2 . . . 4 (𝜑𝐶 = 𝐷)
43adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
54iuneq2dv 5020 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
62, 5eqtrd 2774 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105   ciun 4995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-v 3479  df-ss 3979  df-iun 4997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator