| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| iuneq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2821 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶))) |
| 4 | 3 | rexbidv2 3161 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶)) |
| 5 | 4 | abbidv 2802 | . . 3 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶}) |
| 6 | df-iun 4974 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
| 7 | df-iun 4974 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2796 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| 9 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
| 11 | 10 | iuneq2dv 4997 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| 12 | 8, 11 | eqtrd 2771 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-iun 4974 |
| This theorem is referenced by: disjiunb 5114 cfsmolem 10289 cfsmo 10290 wunex2 10757 wuncval2 10766 imasval 17530 lpival 21290 cnextval 24004 cnextfval 24005 dvfval 25855 fedgmullem1 33674 irngval 33731 mblfinlem2 37687 heiborlem10 37849 iunrelexpmin1 43699 iunrelexpmin2 43703 colleq12d 44244 |
| Copyright terms: Public domain | W3C validator |