MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12d Structured version   Visualization version   GIF version

Theorem iuneq12d 5044
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
iuneq12d.1 (𝜑𝐴 = 𝐵)
iuneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12d
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iuneq12d.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21eleq2d 2830 . . . . . 6 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 630 . . . . 5 (𝜑 → ((𝑥𝐴𝑡𝐶) ↔ (𝑥𝐵𝑡𝐶)))
43rexbidv2 3181 . . . 4 (𝜑 → (∃𝑥𝐴 𝑡𝐶 ↔ ∃𝑥𝐵 𝑡𝐶))
54abbidv 2811 . . 3 (𝜑 → {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶})
6 df-iun 5017 . . 3 𝑥𝐴 𝐶 = {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶}
7 df-iun 5017 . . 3 𝑥𝐵 𝐶 = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶}
85, 6, 73eqtr4g 2805 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
9 iuneq12d.2 . . . 4 (𝜑𝐶 = 𝐷)
109adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
1110iuneq2dv 5039 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
128, 11eqtrd 2780 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wrex 3076   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-iun 5017
This theorem is referenced by:  disjiunb  5156  cfsmolem  10339  cfsmo  10340  wunex2  10807  wuncval2  10816  imasval  17571  lpival  21357  cnextval  24090  cnextfval  24091  dvfval  25952  fedgmullem1  33642  irngval  33685  mblfinlem2  37618  heiborlem10  37780  iunrelexpmin1  43670  iunrelexpmin2  43674  colleq12d  44222
  Copyright terms: Public domain W3C validator