MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12d Structured version   Visualization version   GIF version

Theorem iuneq12d 4981
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
iuneq12d.1 (𝜑𝐴 = 𝐵)
iuneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12d
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iuneq12d.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐴𝑡𝐶) ↔ (𝑥𝐵𝑡𝐶)))
43rexbidv2 3153 . . . 4 (𝜑 → (∃𝑥𝐴 𝑡𝐶 ↔ ∃𝑥𝐵 𝑡𝐶))
54abbidv 2795 . . 3 (𝜑 → {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶})
6 df-iun 4953 . . 3 𝑥𝐴 𝐶 = {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶}
7 df-iun 4953 . . 3 𝑥𝐵 𝐶 = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶}
85, 6, 73eqtr4g 2789 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
9 iuneq12d.2 . . . 4 (𝜑𝐶 = 𝐷)
109adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
1110iuneq2dv 4976 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
128, 11eqtrd 2764 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3446  df-ss 3928  df-iun 4953
This theorem is referenced by:  disjiunb  5092  cfsmolem  10199  cfsmo  10200  wunex2  10667  wuncval2  10676  imasval  17450  lpival  21210  cnextval  23924  cnextfval  23925  dvfval  25774  fedgmullem1  33598  irngval  33653  mblfinlem2  37625  heiborlem10  37787  iunrelexpmin1  43670  iunrelexpmin2  43674  colleq12d  44215
  Copyright terms: Public domain W3C validator