| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| iuneq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2819 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶))) |
| 4 | 3 | rexbidv2 3153 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶)) |
| 5 | 4 | abbidv 2799 | . . 3 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶}) |
| 6 | df-iun 4945 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
| 7 | df-iun 4945 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2793 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| 9 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
| 11 | 10 | iuneq2dv 4968 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| 12 | 8, 11 | eqtrd 2768 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 ∪ ciun 4943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-iun 4945 |
| This theorem is referenced by: disjiunb 5085 cfsmolem 10172 cfsmo 10173 wunex2 10640 wuncval2 10649 imasval 17423 lpival 21270 cnextval 23996 cnextfval 23997 dvfval 25845 fedgmullem1 33714 irngval 33770 mblfinlem2 37771 heiborlem10 37933 iunrelexpmin1 43865 iunrelexpmin2 43869 colleq12d 44410 |
| Copyright terms: Public domain | W3C validator |