MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12d Structured version   Visualization version   GIF version

Theorem iuneq12d 4952
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
Hypotheses
Ref Expression
iuneq1d.1 (𝜑𝐴 = 𝐵)
iuneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12d
StepHypRef Expression
1 iuneq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21iuneq1d 4951 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
3 iuneq12d.2 . . . 4 (𝜑𝐶 = 𝐷)
43adantr 481 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
54iuneq2dv 4948 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
62, 5eqtrd 2778 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iun 4926
This theorem is referenced by:  disjiunb  5063  cfsmolem  10026  cfsmo  10027  wunex2  10494  wuncval2  10503  imasval  17222  lpival  20516  cnextval  23212  cnextfval  23213  dvfval  25061  fedgmullem1  31710  mblfinlem2  35815  heiborlem10  35978  iunrelexpmin1  41316  iunrelexpmin2  41320  colleq12d  41871
  Copyright terms: Public domain W3C validator