![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq12d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | iuneq1d 5023 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
3 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
5 | 4 | iuneq2dv 5020 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
6 | 2, 5 | eqtrd 2770 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-iun 4998 |
This theorem is referenced by: disjiunb 5136 cfsmolem 10267 cfsmo 10268 wunex2 10735 wuncval2 10744 imasval 17461 lpival 21083 cnextval 23785 cnextfval 23786 dvfval 25646 fedgmullem1 33002 irngval 33038 mblfinlem2 36829 heiborlem10 36991 iunrelexpmin1 42761 iunrelexpmin2 42765 colleq12d 43314 |
Copyright terms: Public domain | W3C validator |