MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12d Structured version   Visualization version   GIF version

Theorem iuneq12d 4966
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
iuneq12d.1 (𝜑𝐴 = 𝐵)
iuneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12d
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iuneq12d.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21eleq2d 2817 . . . . . 6 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐴𝑡𝐶) ↔ (𝑥𝐵𝑡𝐶)))
43rexbidv2 3152 . . . 4 (𝜑 → (∃𝑥𝐴 𝑡𝐶 ↔ ∃𝑥𝐵 𝑡𝐶))
54abbidv 2797 . . 3 (𝜑 → {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶})
6 df-iun 4938 . . 3 𝑥𝐴 𝐶 = {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶}
7 df-iun 4938 . . 3 𝑥𝐵 𝐶 = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶}
85, 6, 73eqtr4g 2791 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
9 iuneq12d.2 . . . 4 (𝜑𝐶 = 𝐷)
109adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
1110iuneq2dv 4961 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
128, 11eqtrd 2766 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cab 2709  wrex 3056   ciun 4936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-iun 4938
This theorem is referenced by:  disjiunb  5076  cfsmolem  10156  cfsmo  10157  wunex2  10624  wuncval2  10633  imasval  17410  lpival  21256  cnextval  23971  cnextfval  23972  dvfval  25820  fedgmullem1  33634  irngval  33690  mblfinlem2  37698  heiborlem10  37860  iunrelexpmin1  43741  iunrelexpmin2  43745  colleq12d  44286
  Copyright terms: Public domain W3C validator