| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| iuneq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq12d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶))) |
| 4 | 3 | rexbidv2 3154 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶)) |
| 5 | 4 | abbidv 2796 | . . 3 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶}) |
| 6 | df-iun 4960 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
| 7 | df-iun 4960 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2790 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| 9 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
| 11 | 10 | iuneq2dv 4983 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| 12 | 8, 11 | eqtrd 2765 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: disjiunb 5100 cfsmolem 10230 cfsmo 10231 wunex2 10698 wuncval2 10707 imasval 17481 lpival 21241 cnextval 23955 cnextfval 23956 dvfval 25805 fedgmullem1 33632 irngval 33687 mblfinlem2 37659 heiborlem10 37821 iunrelexpmin1 43704 iunrelexpmin2 43708 colleq12d 44249 |
| Copyright terms: Public domain | W3C validator |