MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq12d Structured version   Visualization version   GIF version

Theorem iuneq12d 4985
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
iuneq12d.1 (𝜑𝐴 = 𝐵)
iuneq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
iuneq12d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem iuneq12d
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 iuneq12d.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
21eleq2d 2814 . . . . . 6 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 631 . . . . 5 (𝜑 → ((𝑥𝐴𝑡𝐶) ↔ (𝑥𝐵𝑡𝐶)))
43rexbidv2 3153 . . . 4 (𝜑 → (∃𝑥𝐴 𝑡𝐶 ↔ ∃𝑥𝐵 𝑡𝐶))
54abbidv 2795 . . 3 (𝜑 → {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶})
6 df-iun 4957 . . 3 𝑥𝐴 𝐶 = {𝑡 ∣ ∃𝑥𝐴 𝑡𝐶}
7 df-iun 4957 . . 3 𝑥𝐵 𝐶 = {𝑡 ∣ ∃𝑥𝐵 𝑡𝐶}
85, 6, 73eqtr4g 2789 . 2 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
9 iuneq12d.2 . . . 4 (𝜑𝐶 = 𝐷)
109adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
1110iuneq2dv 4980 . 2 (𝜑 𝑥𝐵 𝐶 = 𝑥𝐵 𝐷)
128, 11eqtrd 2764 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-iun 4957
This theorem is referenced by:  disjiunb  5097  cfsmolem  10223  cfsmo  10224  wunex2  10691  wuncval2  10700  imasval  17474  lpival  21234  cnextval  23948  cnextfval  23949  dvfval  25798  fedgmullem1  33625  irngval  33680  mblfinlem2  37652  heiborlem10  37814  iunrelexpmin1  43697  iunrelexpmin2  43701  colleq12d  44242
  Copyright terms: Public domain W3C validator