![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq12d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) Remove DV conditions (Revised by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
iuneq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iuneq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iuneq12d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq12d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2825 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶))) |
4 | 3 | rexbidv2 3173 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶)) |
5 | 4 | abbidv 2806 | . . 3 ⊢ (𝜑 → {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶}) |
6 | df-iun 4998 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
7 | df-iun 4998 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = {𝑡 ∣ ∃𝑥 ∈ 𝐵 𝑡 ∈ 𝐶} | |
8 | 5, 6, 7 | 3eqtr4g 2800 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
9 | iuneq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
11 | 10 | iuneq2dv 5021 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
12 | 8, 11 | eqtrd 2775 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: disjiunb 5138 cfsmolem 10308 cfsmo 10309 wunex2 10776 wuncval2 10785 imasval 17558 lpival 21352 cnextval 24085 cnextfval 24086 dvfval 25947 fedgmullem1 33657 irngval 33700 mblfinlem2 37645 heiborlem10 37807 iunrelexpmin1 43698 iunrelexpmin2 43702 colleq12d 44249 |
Copyright terms: Public domain | W3C validator |