| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4984 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iuneq12dOLD 4996 disjxiun 5116 kmlem11 10175 prmreclem4 16939 imasval 17525 iundisj 25501 iundisj2 25502 voliunlem1 25503 iunmbl 25506 volsup 25509 uniioombllem4 25539 iuninc 32541 iundisjf 32570 iundisj2f 32571 suppovss 32658 iundisjfi 32773 iundisj2fi 32774 iundisjcnt 32775 indval2 32831 sigaclcu3 34153 fiunelros 34205 meascnbl 34250 bnj1113 34816 bnj155 34910 bnj570 34936 bnj893 34959 cvmliftlem10 35316 mrsubvrs 35544 msubvrs 35582 voliunnfl 37688 volsupnfl 37689 heiborlem3 37837 heibor 37845 iunrelexp0 43726 iunp1 45090 iundjiunlem 46488 iundjiun 46489 meaiuninclem 46509 meaiuninc 46510 carageniuncllem1 46550 carageniuncllem2 46551 carageniuncl 46552 caratheodorylem1 46555 caratheodorylem2 46556 imasubclem3 49065 imaf1hom 49067 |
| Copyright terms: Public domain | W3C validator |