![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 4804 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∪ ciun 4789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-v 3412 df-in 3831 df-ss 3838 df-iun 4791 |
This theorem is referenced by: iuneq12d 4816 disjxiun 4923 kmlem11 9379 prmreclem4 16110 imasval 16639 iundisj 23868 iundisj2 23869 voliunlem1 23870 iunmbl 23873 volsup 23876 uniioombllem4 23906 iuninc 30099 iundisjf 30123 iundisj2f 30124 suppovss 30205 iundisjfi 30293 iundisj2fi 30294 iundisjcnt 30295 indval2 30950 sigaclcu3 31059 fiunelros 31111 meascnbl 31156 bnj1113 31738 bnj155 31831 bnj570 31857 bnj893 31880 cvmliftlem10 32159 mrsubvrs 32322 msubvrs 32360 voliunnfl 34410 volsupnfl 34411 heiborlem3 34566 heibor 34574 iunrelexp0 39444 iunp1 40781 iundjiunlem 42202 iundjiun 42203 meaiuninclem 42223 meaiuninc 42224 carageniuncllem1 42264 carageniuncllem2 42265 carageniuncl 42266 caratheodorylem1 42269 caratheodorylem2 42270 |
Copyright terms: Public domain | W3C validator |