| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4972 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: iuneq12dOLD 4984 disjxiun 5104 kmlem11 10114 prmreclem4 16890 imasval 17474 iundisj 25449 iundisj2 25450 voliunlem1 25451 iunmbl 25454 volsup 25457 uniioombllem4 25487 iuninc 32489 iundisjf 32518 iundisj2f 32519 suppovss 32604 iundisjfi 32719 iundisj2fi 32720 iundisjcnt 32721 indval2 32777 sigaclcu3 34112 fiunelros 34164 meascnbl 34209 bnj1113 34775 bnj155 34869 bnj570 34895 bnj893 34918 cvmliftlem10 35281 mrsubvrs 35509 msubvrs 35547 voliunnfl 37658 volsupnfl 37659 heiborlem3 37807 heibor 37815 iunrelexp0 43691 iunp1 45060 iundjiunlem 46457 iundjiun 46458 meaiuninclem 46478 meaiuninc 46479 carageniuncllem1 46519 carageniuncllem2 46520 carageniuncl 46521 caratheodorylem1 46524 caratheodorylem2 46525 imasubclem3 49095 imaf1hom 49097 |
| Copyright terms: Public domain | W3C validator |