![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 5012 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-iun 4998 |
This theorem is referenced by: iuneq12d 5024 disjxiun 5144 kmlem11 10157 prmreclem4 16856 imasval 17461 iundisj 25297 iundisj2 25298 voliunlem1 25299 iunmbl 25302 volsup 25305 uniioombllem4 25335 iuninc 32059 iundisjf 32087 iundisj2f 32088 suppovss 32173 iundisjfi 32274 iundisj2fi 32275 iundisjcnt 32276 indval2 33310 sigaclcu3 33418 fiunelros 33470 meascnbl 33515 bnj1113 34094 bnj155 34188 bnj570 34214 bnj893 34237 cvmliftlem10 34583 mrsubvrs 34811 msubvrs 34849 voliunnfl 36835 volsupnfl 36836 heiborlem3 36984 heibor 36992 iunrelexp0 42755 iunp1 44054 iundjiunlem 45473 iundjiun 45474 meaiuninclem 45494 meaiuninc 45495 carageniuncllem1 45535 carageniuncllem2 45536 carageniuncl 45537 caratheodorylem1 45540 caratheodorylem2 45541 |
Copyright terms: Public domain | W3C validator |