![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 5013 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-iun 4999 |
This theorem is referenced by: iuneq12d 5025 disjxiun 5145 kmlem11 10157 prmreclem4 16856 imasval 17461 iundisj 25289 iundisj2 25290 voliunlem1 25291 iunmbl 25294 volsup 25297 uniioombllem4 25327 iuninc 32047 iundisjf 32075 iundisj2f 32076 suppovss 32161 iundisjfi 32262 iundisj2fi 32263 iundisjcnt 32264 indval2 33298 sigaclcu3 33406 fiunelros 33458 meascnbl 33503 bnj1113 34082 bnj155 34176 bnj570 34202 bnj893 34225 cvmliftlem10 34571 mrsubvrs 34799 msubvrs 34837 voliunnfl 36835 volsupnfl 36836 heiborlem3 36984 heibor 36992 iunrelexp0 42755 iunp1 44055 iundjiunlem 45474 iundjiun 45475 meaiuninclem 45495 meaiuninc 45496 carageniuncllem1 45536 carageniuncllem2 45537 carageniuncl 45538 caratheodorylem1 45541 caratheodorylem2 45542 |
Copyright terms: Public domain | W3C validator |