MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq1d Structured version   Visualization version   GIF version

Theorem iuneq1d 5023
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
Hypothesis
Ref Expression
iuneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
iuneq1d (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iuneq1d
StepHypRef Expression
1 iuneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 iuneq1 5012 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
31, 2syl 17 1 (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rex 3069  df-v 3474  df-in 3954  df-ss 3964  df-iun 4998
This theorem is referenced by:  iuneq12d  5024  disjxiun  5144  kmlem11  10157  prmreclem4  16856  imasval  17461  iundisj  25297  iundisj2  25298  voliunlem1  25299  iunmbl  25302  volsup  25305  uniioombllem4  25335  iuninc  32059  iundisjf  32087  iundisj2f  32088  suppovss  32173  iundisjfi  32274  iundisj2fi  32275  iundisjcnt  32276  indval2  33310  sigaclcu3  33418  fiunelros  33470  meascnbl  33515  bnj1113  34094  bnj155  34188  bnj570  34214  bnj893  34237  cvmliftlem10  34583  mrsubvrs  34811  msubvrs  34849  voliunnfl  36835  volsupnfl  36836  heiborlem3  36984  heibor  36992  iunrelexp0  42755  iunp1  44054  iundjiunlem  45473  iundjiun  45474  meaiuninclem  45494  meaiuninc  45495  carageniuncllem1  45535  carageniuncllem2  45536  carageniuncl  45537  caratheodorylem1  45540  caratheodorylem2  45541
  Copyright terms: Public domain W3C validator