![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 5013 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: iuneq12dOLD 5025 disjxiun 5145 kmlem11 10199 prmreclem4 16953 imasval 17558 iundisj 25597 iundisj2 25598 voliunlem1 25599 iunmbl 25602 volsup 25605 uniioombllem4 25635 iuninc 32581 iundisjf 32609 iundisj2f 32610 suppovss 32696 iundisjfi 32804 iundisj2fi 32805 iundisjcnt 32806 indval2 33995 sigaclcu3 34103 fiunelros 34155 meascnbl 34200 bnj1113 34778 bnj155 34872 bnj570 34898 bnj893 34921 cvmliftlem10 35279 mrsubvrs 35507 msubvrs 35545 voliunnfl 37651 volsupnfl 37652 heiborlem3 37800 heibor 37808 iunrelexp0 43692 iunp1 45006 iundjiunlem 46415 iundjiun 46416 meaiuninclem 46436 meaiuninc 46437 carageniuncllem1 46477 carageniuncllem2 46478 carageniuncl 46479 caratheodorylem1 46482 caratheodorylem2 46483 |
Copyright terms: Public domain | W3C validator |