![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 5031 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: iuneq12dOLD 5043 disjxiun 5163 kmlem11 10230 prmreclem4 16966 imasval 17571 iundisj 25602 iundisj2 25603 voliunlem1 25604 iunmbl 25607 volsup 25610 uniioombllem4 25640 iuninc 32583 iundisjf 32611 iundisj2f 32612 suppovss 32697 iundisjfi 32801 iundisj2fi 32802 iundisjcnt 32803 indval2 33978 sigaclcu3 34086 fiunelros 34138 meascnbl 34183 bnj1113 34761 bnj155 34855 bnj570 34881 bnj893 34904 cvmliftlem10 35262 mrsubvrs 35490 msubvrs 35528 voliunnfl 37624 volsupnfl 37625 heiborlem3 37773 heibor 37781 iunrelexp0 43664 iunp1 44968 iundjiunlem 46380 iundjiun 46381 meaiuninclem 46401 meaiuninc 46402 carageniuncllem1 46442 carageniuncllem2 46443 carageniuncl 46444 caratheodorylem1 46447 caratheodorylem2 46448 |
Copyright terms: Public domain | W3C validator |