| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4960 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ ciun 4943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-v 3439 df-ss 3915 df-iun 4945 |
| This theorem is referenced by: iuneq12dOLD 4972 disjxiun 5092 kmlem11 10063 prmreclem4 16838 imasval 17423 iundisj 25496 iundisj2 25497 voliunlem1 25498 iunmbl 25501 volsup 25504 uniioombllem4 25534 iuninc 32561 iundisjf 32590 iundisj2f 32591 suppovss 32686 iundisjfi 32804 iundisj2fi 32805 iundisjcnt 32806 indval2 32861 sigaclcu3 34207 fiunelros 34259 meascnbl 34304 bnj1113 34869 bnj155 34963 bnj570 34989 bnj893 35012 cvmliftlem10 35410 mrsubvrs 35638 msubvrs 35676 voliunnfl 37777 volsupnfl 37778 heiborlem3 37926 heibor 37934 iunrelexp0 43859 iunp1 45227 iundjiunlem 46619 iundjiun 46620 meaiuninclem 46640 meaiuninc 46641 carageniuncllem1 46681 carageniuncllem2 46682 carageniuncl 46683 caratheodorylem1 46686 caratheodorylem2 46687 imasubclem3 49267 imaf1hom 49269 |
| Copyright terms: Public domain | W3C validator |