Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 4937 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: iuneq12d 4949 disjxiun 5067 kmlem11 9847 prmreclem4 16548 imasval 17139 iundisj 24617 iundisj2 24618 voliunlem1 24619 iunmbl 24622 volsup 24625 uniioombllem4 24655 iuninc 30801 iundisjf 30829 iundisj2f 30830 suppovss 30919 iundisjfi 31019 iundisj2fi 31020 iundisjcnt 31021 indval2 31882 sigaclcu3 31990 fiunelros 32042 meascnbl 32087 bnj1113 32665 bnj155 32759 bnj570 32785 bnj893 32808 cvmliftlem10 33156 mrsubvrs 33384 msubvrs 33422 voliunnfl 35748 volsupnfl 35749 heiborlem3 35898 heibor 35906 iunrelexp0 41199 iunp1 42503 iundjiunlem 43887 iundjiun 43888 meaiuninclem 43908 meaiuninc 43909 carageniuncllem1 43949 carageniuncllem2 43950 carageniuncl 43951 caratheodorylem1 43954 caratheodorylem2 43955 |
Copyright terms: Public domain | W3C validator |