Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
Ref | Expression |
---|---|
iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | iuneq1 4940 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: iuneq12d 4952 disjxiun 5071 kmlem11 9916 prmreclem4 16620 imasval 17222 iundisj 24712 iundisj2 24713 voliunlem1 24714 iunmbl 24717 volsup 24720 uniioombllem4 24750 iuninc 30900 iundisjf 30928 iundisj2f 30929 suppovss 31017 iundisjfi 31117 iundisj2fi 31118 iundisjcnt 31119 indval2 31982 sigaclcu3 32090 fiunelros 32142 meascnbl 32187 bnj1113 32765 bnj155 32859 bnj570 32885 bnj893 32908 cvmliftlem10 33256 mrsubvrs 33484 msubvrs 33522 voliunnfl 35821 volsupnfl 35822 heiborlem3 35971 heibor 35979 iunrelexp0 41310 iunp1 42614 iundjiunlem 43997 iundjiun 43998 meaiuninclem 44018 meaiuninc 44019 carageniuncllem1 44059 carageniuncllem2 44060 carageniuncl 44061 caratheodorylem1 44064 caratheodorylem2 44065 |
Copyright terms: Public domain | W3C validator |