| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4968 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq12dOLD 4980 disjxiun 5099 kmlem11 10090 prmreclem4 16866 imasval 17450 iundisj 25425 iundisj2 25426 voliunlem1 25427 iunmbl 25430 volsup 25433 uniioombllem4 25463 iuninc 32462 iundisjf 32491 iundisj2f 32492 suppovss 32577 iundisjfi 32692 iundisj2fi 32693 iundisjcnt 32694 indval2 32750 sigaclcu3 34085 fiunelros 34137 meascnbl 34182 bnj1113 34748 bnj155 34842 bnj570 34868 bnj893 34891 cvmliftlem10 35254 mrsubvrs 35482 msubvrs 35520 voliunnfl 37631 volsupnfl 37632 heiborlem3 37780 heibor 37788 iunrelexp0 43664 iunp1 45033 iundjiunlem 46430 iundjiun 46431 meaiuninclem 46451 meaiuninc 46452 carageniuncllem1 46492 carageniuncllem2 46493 carageniuncl 46494 caratheodorylem1 46497 caratheodorylem2 46498 imasubclem3 49068 imaf1hom 49070 |
| Copyright terms: Public domain | W3C validator |