| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4975 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iuneq12dOLD 4987 disjxiun 5107 kmlem11 10121 prmreclem4 16897 imasval 17481 iundisj 25456 iundisj2 25457 voliunlem1 25458 iunmbl 25461 volsup 25464 uniioombllem4 25494 iuninc 32496 iundisjf 32525 iundisj2f 32526 suppovss 32611 iundisjfi 32726 iundisj2fi 32727 iundisjcnt 32728 indval2 32784 sigaclcu3 34119 fiunelros 34171 meascnbl 34216 bnj1113 34782 bnj155 34876 bnj570 34902 bnj893 34925 cvmliftlem10 35288 mrsubvrs 35516 msubvrs 35554 voliunnfl 37665 volsupnfl 37666 heiborlem3 37814 heibor 37822 iunrelexp0 43698 iunp1 45067 iundjiunlem 46464 iundjiun 46465 meaiuninclem 46485 meaiuninc 46486 carageniuncllem1 46526 carageniuncllem2 46527 carageniuncl 46528 caratheodorylem1 46531 caratheodorylem2 46532 imasubclem3 49099 imaf1hom 49101 |
| Copyright terms: Public domain | W3C validator |