| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4953 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ ciun 4936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4938 |
| This theorem is referenced by: iuneq12dOLD 4965 disjxiun 5083 kmlem11 10047 prmreclem4 16826 imasval 17410 iundisj 25471 iundisj2 25472 voliunlem1 25473 iunmbl 25476 volsup 25479 uniioombllem4 25509 iuninc 32532 iundisjf 32561 iundisj2f 32562 suppovss 32654 iundisjfi 32770 iundisj2fi 32771 iundisjcnt 32772 indval2 32827 sigaclcu3 34127 fiunelros 34179 meascnbl 34224 bnj1113 34789 bnj155 34883 bnj570 34909 bnj893 34932 cvmliftlem10 35330 mrsubvrs 35558 msubvrs 35596 voliunnfl 37704 volsupnfl 37705 heiborlem3 37853 heibor 37861 iunrelexp0 43735 iunp1 45103 iundjiunlem 46497 iundjiun 46498 meaiuninclem 46518 meaiuninc 46519 carageniuncllem1 46559 carageniuncllem2 46560 carageniuncl 46561 caratheodorylem1 46564 caratheodorylem2 46565 imasubclem3 49138 imaf1hom 49140 |
| Copyright terms: Public domain | W3C validator |