| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.) |
| Ref | Expression |
|---|---|
| iuneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| iuneq1d | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | iuneq1 4961 | . 2 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ ciun 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3440 df-ss 3922 df-iun 4946 |
| This theorem is referenced by: iuneq12dOLD 4973 disjxiun 5092 kmlem11 10074 prmreclem4 16850 imasval 17434 iundisj 25466 iundisj2 25467 voliunlem1 25468 iunmbl 25471 volsup 25474 uniioombllem4 25504 iuninc 32523 iundisjf 32552 iundisj2f 32553 suppovss 32642 iundisjfi 32758 iundisj2fi 32759 iundisjcnt 32760 indval2 32816 sigaclcu3 34108 fiunelros 34160 meascnbl 34205 bnj1113 34771 bnj155 34865 bnj570 34891 bnj893 34914 cvmliftlem10 35286 mrsubvrs 35514 msubvrs 35552 voliunnfl 37663 volsupnfl 37664 heiborlem3 37812 heibor 37820 iunrelexp0 43695 iunp1 45064 iundjiunlem 46460 iundjiun 46461 meaiuninclem 46481 meaiuninc 46482 carageniuncllem1 46522 carageniuncllem2 46523 carageniuncl 46524 caratheodorylem1 46527 caratheodorylem2 46528 imasubclem3 49111 imaf1hom 49113 |
| Copyright terms: Public domain | W3C validator |