Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 4940 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: iuneq12d 4949 iuneq2d 4950 fparlem3 7925 fparlem4 7926 oalim 8324 omlim 8325 oelim 8326 oelim2 8388 r1val3 9527 imasdsval 17143 acsfn 17285 tgidm 22038 cmpsub 22459 alexsublem 23103 bcth3 24400 ovoliunlem1 24571 voliunlem1 24619 uniiccdif 24647 uniioombllem2 24652 uniioombllem3a 24653 uniioombllem4 24655 itg2monolem1 24820 taylpfval 25429 ofpreima2 30905 fnpreimac 30910 esum2dlem 31960 eulerpartlemgu 32244 cvmscld 33135 satom 33218 msubvrs 33422 mblfinlem2 35742 ftc1anclem6 35782 heibor 35906 prjspval2 40373 trclfvcom 41220 scottrankd 41755 meaiininclem 43914 carageniuncllem2 43950 hoidmv1le 44022 hoidmvle 44028 ovnhoilem2 44030 ovnhoi 44031 ovnlecvr2 44038 ovncvr2 44039 hspmbl 44057 ovolval4lem1 44077 ovnovollem1 44084 ovnovollem2 44085 iunhoiioo 44104 vonioolem2 44109 smflimlem4 44196 smflimlem6 44198 |
Copyright terms: Public domain | W3C validator |