![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 5016 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: iuneq12dOLD 5025 iuneq12d 5026 iuneq2d 5027 fparlem3 8138 fparlem4 8139 oalim 8569 omlim 8570 oelim 8571 oelim2 8632 r1val3 9876 imasdsval 17562 acsfn 17704 tgidm 23003 cmpsub 23424 alexsublem 24068 bcth3 25379 ovoliunlem1 25551 voliunlem1 25599 uniiccdif 25627 uniioombllem2 25632 uniioombllem3a 25633 uniioombllem4 25635 itg2monolem1 25800 taylpfval 26421 dmdju 32664 ofpreima2 32683 fnpreimac 32688 ssdifidllem 33464 esum2dlem 34073 eulerpartlemgu 34359 cvmscld 35258 satom 35341 msubvrs 35545 mblfinlem2 37645 ftc1anclem6 37685 heibor 37808 prjspval2 42600 trclfvcom 43713 scottrankd 44244 meaiininclem 46442 carageniuncllem2 46478 hoidmv1le 46550 hoidmvle 46556 ovnhoilem2 46558 ovnhoi 46559 ovnlecvr2 46566 ovncvr2 46567 hspmbl 46585 ovolval4lem1 46605 ovnovollem1 46612 ovnovollem2 46613 iunhoiioo 46632 vonioolem2 46637 smflimlem4 46730 smflimlem6 46732 |
Copyright terms: Public domain | W3C validator |