| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4975 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: iuneq12dOLD 4984 iuneq12d 4985 iuneq2d 4986 fparlem3 8093 fparlem4 8094 oalim 8496 omlim 8497 oelim 8498 oelim2 8559 r1val3 9791 imasdsval 17478 acsfn 17620 tgidm 22867 cmpsub 23287 alexsublem 23931 bcth3 25231 ovoliunlem1 25403 voliunlem1 25451 uniiccdif 25479 uniioombllem2 25484 uniioombllem3a 25485 uniioombllem4 25487 itg2monolem1 25651 taylpfval 26272 dmdju 32571 ofpreima2 32590 fnpreimac 32595 ssdifidllem 33427 esum2dlem 34082 eulerpartlemgu 34368 cvmscld 35260 satom 35343 msubvrs 35547 mblfinlem2 37652 ftc1anclem6 37692 heibor 37815 prjspval2 42601 trclfvcom 43712 scottrankd 44237 meaiininclem 46484 carageniuncllem2 46520 hoidmv1le 46592 hoidmvle 46598 ovnhoilem2 46600 ovnhoi 46601 ovnlecvr2 46608 ovncvr2 46609 hspmbl 46627 ovolval4lem1 46647 ovnovollem1 46654 ovnovollem2 46655 iunhoiioo 46674 vonioolem2 46679 smflimlem4 46772 smflimlem6 46774 |
| Copyright terms: Public domain | W3C validator |