| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4971 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq12dOLD 4980 iuneq12d 4981 iuneq2d 4982 fparlem3 8070 fparlem4 8071 oalim 8473 omlim 8474 oelim 8475 oelim2 8536 r1val3 9767 imasdsval 17454 acsfn 17600 tgidm 22900 cmpsub 23320 alexsublem 23964 bcth3 25264 ovoliunlem1 25436 voliunlem1 25484 uniiccdif 25512 uniioombllem2 25517 uniioombllem3a 25518 uniioombllem4 25520 itg2monolem1 25684 taylpfval 26305 dmdju 32621 ofpreima2 32640 fnpreimac 32645 ssdifidllem 33420 esum2dlem 34075 eulerpartlemgu 34361 cvmscld 35253 satom 35336 msubvrs 35540 mblfinlem2 37645 ftc1anclem6 37685 heibor 37808 prjspval2 42594 trclfvcom 43705 scottrankd 44230 meaiininclem 46477 carageniuncllem2 46513 hoidmv1le 46585 hoidmvle 46591 ovnhoilem2 46593 ovnhoi 46594 ovnlecvr2 46601 ovncvr2 46602 hspmbl 46620 ovolval4lem1 46640 ovnovollem1 46647 ovnovollem2 46648 iunhoiioo 46667 vonioolem2 46672 smflimlem4 46765 smflimlem6 46767 |
| Copyright terms: Public domain | W3C validator |