| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4971 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq12dOLD 4980 iuneq12d 4981 iuneq2d 4982 fparlem3 8070 fparlem4 8071 oalim 8473 omlim 8474 oelim 8475 oelim2 8536 r1val3 9767 imasdsval 17454 acsfn 17596 tgidm 22843 cmpsub 23263 alexsublem 23907 bcth3 25207 ovoliunlem1 25379 voliunlem1 25427 uniiccdif 25455 uniioombllem2 25460 uniioombllem3a 25461 uniioombllem4 25463 itg2monolem1 25627 taylpfval 26248 dmdju 32544 ofpreima2 32563 fnpreimac 32568 ssdifidllem 33400 esum2dlem 34055 eulerpartlemgu 34341 cvmscld 35233 satom 35316 msubvrs 35520 mblfinlem2 37625 ftc1anclem6 37665 heibor 37788 prjspval2 42574 trclfvcom 43685 scottrankd 44210 meaiininclem 46457 carageniuncllem2 46493 hoidmv1le 46565 hoidmvle 46571 ovnhoilem2 46573 ovnhoi 46574 ovnlecvr2 46581 ovncvr2 46582 hspmbl 46600 ovolval4lem1 46620 ovnovollem1 46627 ovnovollem2 46628 iunhoiioo 46647 vonioolem2 46652 smflimlem4 46745 smflimlem6 46747 |
| Copyright terms: Public domain | W3C validator |