| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4961 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-iun 4943 |
| This theorem is referenced by: iuneq12dOLD 4970 iuneq12d 4971 iuneq2d 4972 fparlem3 8047 fparlem4 8048 oalim 8450 omlim 8451 oelim 8452 oelim2 8513 r1val3 9734 imasdsval 17419 acsfn 17565 tgidm 22865 cmpsub 23285 alexsublem 23929 bcth3 25229 ovoliunlem1 25401 voliunlem1 25449 uniiccdif 25477 uniioombllem2 25482 uniioombllem3a 25483 uniioombllem4 25485 itg2monolem1 25649 taylpfval 26270 dmdju 32590 ofpreima2 32609 fnpreimac 32614 ssdifidllem 33393 esum2dlem 34059 eulerpartlemgu 34345 cvmscld 35250 satom 35333 msubvrs 35537 mblfinlem2 37642 ftc1anclem6 37682 heibor 37805 prjspval2 42590 trclfvcom 43700 scottrankd 44225 meaiininclem 46471 carageniuncllem2 46507 hoidmv1le 46579 hoidmvle 46585 ovnhoilem2 46587 ovnhoi 46588 ovnlecvr2 46595 ovncvr2 46596 hspmbl 46614 ovolval4lem1 46634 ovnovollem1 46641 ovnovollem2 46642 iunhoiioo 46661 vonioolem2 46666 smflimlem4 46759 smflimlem6 46761 |
| Copyright terms: Public domain | W3C validator |