| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4987 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iuneq12dOLD 4996 iuneq12d 4997 iuneq2d 4998 fparlem3 8113 fparlem4 8114 oalim 8544 omlim 8545 oelim 8546 oelim2 8607 r1val3 9852 imasdsval 17529 acsfn 17671 tgidm 22918 cmpsub 23338 alexsublem 23982 bcth3 25283 ovoliunlem1 25455 voliunlem1 25503 uniiccdif 25531 uniioombllem2 25536 uniioombllem3a 25537 uniioombllem4 25539 itg2monolem1 25703 taylpfval 26324 dmdju 32625 ofpreima2 32644 fnpreimac 32649 ssdifidllem 33471 esum2dlem 34123 eulerpartlemgu 34409 cvmscld 35295 satom 35378 msubvrs 35582 mblfinlem2 37682 ftc1anclem6 37722 heibor 37845 prjspval2 42636 trclfvcom 43747 scottrankd 44272 meaiininclem 46515 carageniuncllem2 46551 hoidmv1le 46623 hoidmvle 46629 ovnhoilem2 46631 ovnhoi 46632 ovnlecvr2 46639 ovncvr2 46640 hspmbl 46658 ovolval4lem1 46678 ovnovollem1 46685 ovnovollem2 46686 iunhoiioo 46705 vonioolem2 46710 smflimlem4 46803 smflimlem6 46805 |
| Copyright terms: Public domain | W3C validator |