![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 5034 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: iuneq12dOLD 5043 iuneq12d 5044 iuneq2d 5045 fparlem3 8155 fparlem4 8156 oalim 8588 omlim 8589 oelim 8590 oelim2 8651 r1val3 9907 imasdsval 17575 acsfn 17717 tgidm 23008 cmpsub 23429 alexsublem 24073 bcth3 25384 ovoliunlem1 25556 voliunlem1 25604 uniiccdif 25632 uniioombllem2 25637 uniioombllem3a 25638 uniioombllem4 25640 itg2monolem1 25805 taylpfval 26424 ofpreima2 32684 fnpreimac 32689 ssdifidllem 33449 esum2dlem 34056 eulerpartlemgu 34342 cvmscld 35241 satom 35324 msubvrs 35528 mblfinlem2 37618 ftc1anclem6 37658 heibor 37781 prjspval2 42568 trclfvcom 43685 scottrankd 44217 meaiininclem 46407 carageniuncllem2 46443 hoidmv1le 46515 hoidmvle 46521 ovnhoilem2 46523 ovnhoi 46524 ovnlecvr2 46531 ovncvr2 46532 hspmbl 46550 ovolval4lem1 46570 ovnovollem1 46577 ovnovollem2 46578 iunhoiioo 46597 vonioolem2 46602 smflimlem4 46695 smflimlem6 46697 |
Copyright terms: Public domain | W3C validator |