Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 4943 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: iuneq12d 4952 iuneq2d 4953 fparlem3 7954 fparlem4 7955 oalim 8362 omlim 8363 oelim 8364 oelim2 8426 r1val3 9596 imasdsval 17226 acsfn 17368 tgidm 22130 cmpsub 22551 alexsublem 23195 bcth3 24495 ovoliunlem1 24666 voliunlem1 24714 uniiccdif 24742 uniioombllem2 24747 uniioombllem3a 24748 uniioombllem4 24750 itg2monolem1 24915 taylpfval 25524 ofpreima2 31003 fnpreimac 31008 esum2dlem 32060 eulerpartlemgu 32344 cvmscld 33235 satom 33318 msubvrs 33522 mblfinlem2 35815 ftc1anclem6 35855 heibor 35979 prjspval2 40452 trclfvcom 41331 scottrankd 41866 meaiininclem 44024 carageniuncllem2 44060 hoidmv1le 44132 hoidmvle 44138 ovnhoilem2 44140 ovnhoi 44141 ovnlecvr2 44148 ovncvr2 44149 hspmbl 44167 ovolval4lem1 44187 ovnovollem1 44194 ovnovollem2 44195 iunhoiioo 44214 vonioolem2 44219 smflimlem4 44309 smflimlem6 44311 |
Copyright terms: Public domain | W3C validator |