| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4959 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4941 |
| This theorem is referenced by: iuneq12dOLD 4968 iuneq12d 4969 iuneq2d 4970 fparlem3 8044 fparlem4 8045 oalim 8447 omlim 8448 oelim 8449 oelim2 8510 r1val3 9731 imasdsval 17419 acsfn 17565 tgidm 22895 cmpsub 23315 alexsublem 23959 bcth3 25258 ovoliunlem1 25430 voliunlem1 25478 uniiccdif 25506 uniioombllem2 25511 uniioombllem3a 25512 uniioombllem4 25514 itg2monolem1 25678 taylpfval 26299 dmdju 32629 ofpreima2 32648 fnpreimac 32653 ssdifidllem 33421 esum2dlem 34105 eulerpartlemgu 34390 cvmscld 35317 satom 35400 msubvrs 35604 mblfinlem2 37708 ftc1anclem6 37748 heibor 37871 prjspval2 42716 trclfvcom 43826 scottrankd 44351 meaiininclem 46594 carageniuncllem2 46630 hoidmv1le 46702 hoidmvle 46708 ovnhoilem2 46710 ovnhoi 46711 ovnlecvr2 46718 ovncvr2 46719 hspmbl 46737 ovolval4lem1 46757 ovnovollem1 46764 ovnovollem2 46765 iunhoiioo 46784 vonioolem2 46789 smflimlem4 46882 smflimlem6 46884 |
| Copyright terms: Public domain | W3C validator |