| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
| Ref | Expression |
|---|---|
| iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | iuneq2 4978 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iuneq12dOLD 4987 iuneq12d 4988 iuneq2d 4989 fparlem3 8096 fparlem4 8097 oalim 8499 omlim 8500 oelim 8501 oelim2 8562 r1val3 9798 imasdsval 17485 acsfn 17627 tgidm 22874 cmpsub 23294 alexsublem 23938 bcth3 25238 ovoliunlem1 25410 voliunlem1 25458 uniiccdif 25486 uniioombllem2 25491 uniioombllem3a 25492 uniioombllem4 25494 itg2monolem1 25658 taylpfval 26279 dmdju 32578 ofpreima2 32597 fnpreimac 32602 ssdifidllem 33434 esum2dlem 34089 eulerpartlemgu 34375 cvmscld 35267 satom 35350 msubvrs 35554 mblfinlem2 37659 ftc1anclem6 37699 heibor 37822 prjspval2 42608 trclfvcom 43719 scottrankd 44244 meaiininclem 46491 carageniuncllem2 46527 hoidmv1le 46599 hoidmvle 46605 ovnhoilem2 46607 ovnhoi 46608 ovnlecvr2 46615 ovncvr2 46616 hspmbl 46634 ovolval4lem1 46654 ovnovollem1 46661 ovnovollem2 46662 iunhoiioo 46681 vonioolem2 46686 smflimlem4 46779 smflimlem6 46781 |
| Copyright terms: Public domain | W3C validator |