Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3113 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 4944 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ ciun 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3432 df-in 3894 df-ss 3904 df-iun 4927 |
This theorem is referenced by: iuneq12d 4953 iuneq2d 4954 fparlem3 7942 fparlem4 7943 oalim 8350 omlim 8351 oelim 8352 oelim2 8414 r1val3 9584 imasdsval 17214 acsfn 17356 tgidm 22118 cmpsub 22539 alexsublem 23183 bcth3 24483 ovoliunlem1 24654 voliunlem1 24702 uniiccdif 24730 uniioombllem2 24735 uniioombllem3a 24736 uniioombllem4 24738 itg2monolem1 24903 taylpfval 25512 ofpreima2 30989 fnpreimac 30994 esum2dlem 32046 eulerpartlemgu 32330 cvmscld 33221 satom 33304 msubvrs 33508 mblfinlem2 35801 ftc1anclem6 35841 heibor 35965 prjspval2 40438 trclfvcom 41290 scottrankd 41825 meaiininclem 43983 carageniuncllem2 44019 hoidmv1le 44091 hoidmvle 44097 ovnhoilem2 44099 ovnhoi 44100 ovnlecvr2 44107 ovncvr2 44108 hspmbl 44126 ovolval4lem1 44146 ovnovollem1 44153 ovnovollem2 44154 iunhoiioo 44173 vonioolem2 44178 smflimlem4 44265 smflimlem6 44267 |
Copyright terms: Public domain | W3C validator |