MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 957
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 416 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 416 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 857 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 410 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848
This theorem is referenced by:  ccase  1038  preq12nebg  4773  opthprneg  4775  elpreqpr  4777  tpres  7016  xaddnemnf  12826  xaddnepnf  12827  faclbnd  13856  faclbnd3  13858  faclbnd4lem1  13859  znf1o  20516  degltlem1  24970  ipasslem3  28914  padct  30774  fz1nntr  30845  xrge0iifhom  31601  bj-ideqg1ALT  35071  fzsplit1nn0  40279  f1mo  45853
  Copyright terms: Public domain W3C validator