Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
5 | 2, 4 | jaoi 853 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: ccase 1034 preq12nebg 4790 opthprneg 4792 elpreqpr 4794 tpres 7058 xaddnemnf 12899 xaddnepnf 12900 faclbnd 13932 faclbnd3 13934 faclbnd4lem1 13935 znf1o 20671 degltlem1 25142 ipasslem3 29096 padct 30956 fz1nntr 31027 xrge0iifhom 31789 bj-ideqg1ALT 35263 fzsplit1nn0 40492 f1mo 46068 |
Copyright terms: Public domain | W3C validator |