| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version | ||
| Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 2, 4 | jaoi 857 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccase 1037 preq12nebg 4830 opthprneg 4832 elpreqpr 4834 tpres 7178 xaddnemnf 13203 xaddnepnf 13204 faclbnd 14262 faclbnd3 14264 faclbnd4lem1 14265 znf1o 21468 degltlem1 25984 ipasslem3 30769 padct 32650 fz1nntr 32734 xrge0iifhom 33934 bj-ideqg1ALT 37160 nn0addcom 42457 nn0mulcom 42461 fzsplit1nn0 42749 f1mo 48845 |
| Copyright terms: Public domain | W3C validator |