Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
4 | 3 | ex 413 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
5 | 2, 4 | jaoi 854 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
6 | 5 | imp 407 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 |
This theorem is referenced by: ccase 1035 preq12nebg 4793 opthprneg 4795 elpreqpr 4797 tpres 7076 xaddnemnf 12970 xaddnepnf 12971 faclbnd 14004 faclbnd3 14006 faclbnd4lem1 14007 znf1o 20759 degltlem1 25237 ipasslem3 29195 padct 31054 fz1nntr 31125 xrge0iifhom 31887 bj-ideqg1ALT 35336 fzsplit1nn0 40576 f1mo 46180 |
Copyright terms: Public domain | W3C validator |