![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
5 | 2, 4 | jaoi 856 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 |
This theorem is referenced by: ccase 1038 preq12nebg 4887 opthprneg 4889 elpreqpr 4891 tpres 7238 xaddnemnf 13298 xaddnepnf 13299 faclbnd 14339 faclbnd3 14341 faclbnd4lem1 14342 znf1o 21593 degltlem1 26131 ipasslem3 30865 padct 32733 fz1nntr 32809 xrge0iifhom 33883 bj-ideqg1ALT 37131 nn0addcom 42426 nn0mulcom 42430 fzsplit1nn0 42710 f1mo 48566 |
Copyright terms: Public domain | W3C validator |