| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version | ||
| Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 2, 4 | jaoi 857 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccase 1037 preq12nebg 4816 opthprneg 4818 elpreqpr 4820 tpres 7144 xaddnemnf 13142 xaddnepnf 13143 faclbnd 14204 faclbnd3 14206 faclbnd4lem1 14207 znf1o 21497 degltlem1 26024 ipasslem3 30834 padct 32725 fz1nntr 32810 xrge0iifhom 34022 bj-ideqg1ALT 37282 nn0addcom 42632 nn0mulcom 42636 fzsplit1nn0 42911 f1mo 49014 |
| Copyright terms: Public domain | W3C validator |