MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 958
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 412 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 857 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 406 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  ccase  1037  preq12nebg  4830  opthprneg  4832  elpreqpr  4834  tpres  7178  xaddnemnf  13203  xaddnepnf  13204  faclbnd  14262  faclbnd3  14264  faclbnd4lem1  14265  znf1o  21468  degltlem1  25984  ipasslem3  30769  padct  32650  fz1nntr  32734  xrge0iifhom  33934  bj-ideqg1ALT  37160  nn0addcom  42457  nn0mulcom  42461  fzsplit1nn0  42749  f1mo  48845
  Copyright terms: Public domain W3C validator