MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 954
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 413 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 413 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 854 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 407 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  ccase  1035  preq12nebg  4793  opthprneg  4795  elpreqpr  4797  tpres  7076  xaddnemnf  12970  xaddnepnf  12971  faclbnd  14004  faclbnd3  14006  faclbnd4lem1  14007  znf1o  20759  degltlem1  25237  ipasslem3  29195  padct  31054  fz1nntr  31125  xrge0iifhom  31887  bj-ideqg1ALT  35336  fzsplit1nn0  40576  f1mo  46180
  Copyright terms: Public domain W3C validator