MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 953
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 412 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 854 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 406 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845
This theorem is referenced by:  ccase  1034  preq12nebg  4856  opthprneg  4858  elpreqpr  4860  tpres  7195  xaddnemnf  13213  xaddnepnf  13214  faclbnd  14248  faclbnd3  14250  faclbnd4lem1  14251  znf1o  21416  degltlem1  25932  ipasslem3  30558  padct  32416  fz1nntr  32487  xrge0iifhom  33409  bj-ideqg1ALT  36537  nn0addcom  41837  nn0mulcom  41841  fzsplit1nn0  42006  f1mo  47731
  Copyright terms: Public domain W3C validator