![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 414 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
4 | 3 | ex 414 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
5 | 2, 4 | jaoi 856 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
6 | 5 | imp 408 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 |
This theorem is referenced by: ccase 1037 preq12nebg 4864 opthprneg 4866 elpreqpr 4868 tpres 7202 xaddnemnf 13215 xaddnepnf 13216 faclbnd 14250 faclbnd3 14252 faclbnd4lem1 14253 znf1o 21107 degltlem1 25590 ipasslem3 30086 padct 31944 fz1nntr 32015 xrge0iifhom 32917 bj-ideqg1ALT 36046 nn0addcom 41323 nn0mulcom 41327 fzsplit1nn0 41492 f1mo 47519 |
Copyright terms: Public domain | W3C validator |