![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version |
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
Ref | Expression |
---|---|
jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
5 | 2, 4 | jaoi 854 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 |
This theorem is referenced by: ccase 1034 preq12nebg 4856 opthprneg 4858 elpreqpr 4860 tpres 7195 xaddnemnf 13213 xaddnepnf 13214 faclbnd 14248 faclbnd3 14250 faclbnd4lem1 14251 znf1o 21416 degltlem1 25932 ipasslem3 30558 padct 32416 fz1nntr 32487 xrge0iifhom 33409 bj-ideqg1ALT 36537 nn0addcom 41837 nn0mulcom 41841 fzsplit1nn0 42006 f1mo 47731 |
Copyright terms: Public domain | W3C validator |