| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoian | Structured version Visualization version GIF version | ||
| Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 2, 4 | jaoi 857 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
| 6 | 5 | imp 406 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: ccase 1037 preq12nebg 4817 opthprneg 4819 elpreqpr 4821 tpres 7141 xaddnemnf 13156 xaddnepnf 13157 faclbnd 14215 faclbnd3 14217 faclbnd4lem1 14218 znf1o 21476 degltlem1 25993 ipasslem3 30795 padct 32676 fz1nntr 32760 xrge0iifhom 33906 bj-ideqg1ALT 37141 nn0addcom 42438 nn0mulcom 42442 fzsplit1nn0 42730 f1mo 48841 |
| Copyright terms: Public domain | W3C validator |