MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 958
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 412 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 857 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 406 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848
This theorem is referenced by:  ccase  1037  preq12nebg  4827  opthprneg  4829  elpreqpr  4831  tpres  7175  xaddnemnf  13196  xaddnepnf  13197  faclbnd  14255  faclbnd3  14257  faclbnd4lem1  14258  znf1o  21461  degltlem1  25977  ipasslem3  30762  padct  32643  fz1nntr  32727  xrge0iifhom  33927  bj-ideqg1ALT  37153  nn0addcom  42450  nn0mulcom  42454  fzsplit1nn0  42742  f1mo  48841
  Copyright terms: Public domain W3C validator