MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoian Structured version   Visualization version   GIF version

Theorem jaoian 953
Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
Hypotheses
Ref Expression
jaoian.1 ((𝜑𝜓) → 𝜒)
jaoian.2 ((𝜃𝜓) → 𝜒)
Assertion
Ref Expression
jaoian (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Proof of Theorem jaoian
StepHypRef Expression
1 jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
3 jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 412 . . 3 (𝜃 → (𝜓𝜒))
52, 4jaoi 853 . 2 ((𝜑𝜃) → (𝜓𝜒))
65imp 406 1 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  ccase  1034  preq12nebg  4790  opthprneg  4792  elpreqpr  4794  tpres  7058  xaddnemnf  12899  xaddnepnf  12900  faclbnd  13932  faclbnd3  13934  faclbnd4lem1  13935  znf1o  20671  degltlem1  25142  ipasslem3  29096  padct  30956  fz1nntr  31027  xrge0iifhom  31789  bj-ideqg1ALT  35263  fzsplit1nn0  40492  f1mo  46068
  Copyright terms: Public domain W3C validator