![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absle | Structured version Visualization version GIF version |
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
absle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ) | |
2 | 1 | renegcld 11688 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ) |
3 | 1 | recnd 11287 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ) |
4 | abscl 15314 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ) |
6 | simplr 769 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ) | |
7 | leabs 15335 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴)) |
9 | absneg 15313 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | |
10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴)) |
11 | 8, 10 | breqtrd 5174 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴)) |
12 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵) | |
13 | 2, 5, 6, 11, 12 | letrd 11416 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ 𝐵) |
14 | leabs 15335 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴)) |
16 | 1, 5, 6, 15, 12 | letrd 11416 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ 𝐵) |
17 | 13, 16 | jca 511 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) |
18 | 17 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 → (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵))) |
19 | absor 15336 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | |
20 | 19 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
21 | breq1 5151 | . . . . . . 7 ⊢ ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵)) | |
22 | 21 | biimprd 248 | . . . . . 6 ⊢ ((abs‘𝐴) = 𝐴 → (𝐴 ≤ 𝐵 → (abs‘𝐴) ≤ 𝐵)) |
23 | breq1 5151 | . . . . . . 7 ⊢ ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴 ≤ 𝐵)) | |
24 | 23 | biimprd 248 | . . . . . 6 ⊢ ((abs‘𝐴) = -𝐴 → (-𝐴 ≤ 𝐵 → (abs‘𝐴) ≤ 𝐵)) |
25 | 22, 24 | jaoa 957 | . . . . 5 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
26 | 25 | ancomsd 465 | . . . 4 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
27 | 20, 26 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
28 | 18, 27 | impbid 212 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵))) |
29 | lenegcon1 11765 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | |
30 | 29 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
31 | 28, 30 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 ℂcc 11151 ℝcr 11152 ≤ cle 11294 -cneg 11491 abscabs 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 |
This theorem is referenced by: absdifle 15354 lenegsq 15356 abs2difabs 15370 abslei 15427 absled 15466 volsup2 25654 efif1olem3 26601 argregt0 26667 argrege0 26668 abscxpbnd 26811 lgseisen 27438 ftc1anclem1 37680 pellexlem5 42821 rexabslelem 45368 |
Copyright terms: Public domain | W3C validator |