MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absle Structured version   Visualization version   GIF version

Theorem absle 15320
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Proof of Theorem absle
StepHypRef Expression
1 simpll 765 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ)
21renegcld 11691 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ)
31recnd 11292 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ)
4 abscl 15283 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 767 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ)
7 leabs 15304 . . . . . . . 8 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 15282 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 5179 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 483 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)
132, 5, 6, 11, 12letrd 11421 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴𝐵)
14 leabs 15304 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 724 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12letrd 11421 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴𝐵)
1713, 16jca 510 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴𝐵𝐴𝐵))
1817ex 411 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 → (-𝐴𝐵𝐴𝐵)))
19 absor 15305 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
2019adantr 479 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
21 breq1 5156 . . . . . . 7 ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) ≤ 𝐵𝐴𝐵))
2221biimprd 247 . . . . . 6 ((abs‘𝐴) = 𝐴 → (𝐴𝐵 → (abs‘𝐴) ≤ 𝐵))
23 breq1 5156 . . . . . . 7 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴𝐵))
2423biimprd 247 . . . . . 6 ((abs‘𝐴) = -𝐴 → (-𝐴𝐵 → (abs‘𝐴) ≤ 𝐵))
2522, 24jaoa 953 . . . . 5 (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴𝐵 ∧ -𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2625ancomsd 464 . . . 4 (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴𝐵𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2720, 26syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2818, 27impbid 211 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴𝐵𝐴𝐵)))
29 lenegcon1 11768 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
3029anbi1d 629 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
3128, 30bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  cc 11156  cr 11157  cle 11299  -cneg 11495  abscabs 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241
This theorem is referenced by:  absdifle  15323  lenegsq  15325  abs2difabs  15339  abslei  15396  absled  15435  volsup2  25625  efif1olem3  26571  argregt0  26637  argrege0  26638  abscxpbnd  26781  lgseisen  27408  ftc1anclem1  37394  pellexlem5  42490  rexabslelem  45033
  Copyright terms: Public domain W3C validator