Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absle | Structured version Visualization version GIF version |
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
absle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ) | |
2 | 1 | renegcld 11259 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ) |
3 | 1 | recnd 10861 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ) |
4 | abscl 14842 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ) |
6 | simplr 769 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ) | |
7 | leabs 14863 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴)) |
9 | absneg 14841 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | |
10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴)) |
11 | 8, 10 | breqtrd 5079 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴)) |
12 | simpr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵) | |
13 | 2, 5, 6, 11, 12 | letrd 10989 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ 𝐵) |
14 | leabs 14863 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴)) |
16 | 1, 5, 6, 15, 12 | letrd 10989 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ 𝐵) |
17 | 13, 16 | jca 515 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵)) |
18 | 17 | ex 416 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 → (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵))) |
19 | absor 14864 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | |
20 | 19 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
21 | breq1 5056 | . . . . . . 7 ⊢ ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵)) | |
22 | 21 | biimprd 251 | . . . . . 6 ⊢ ((abs‘𝐴) = 𝐴 → (𝐴 ≤ 𝐵 → (abs‘𝐴) ≤ 𝐵)) |
23 | breq1 5056 | . . . . . . 7 ⊢ ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴 ≤ 𝐵)) | |
24 | 23 | biimprd 251 | . . . . . 6 ⊢ ((abs‘𝐴) = -𝐴 → (-𝐴 ≤ 𝐵 → (abs‘𝐴) ≤ 𝐵)) |
25 | 22, 24 | jaoa 956 | . . . . 5 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴 ≤ 𝐵 ∧ -𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
26 | 25 | ancomsd 469 | . . . 4 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
27 | 20, 26 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)) |
28 | 18, 27 | impbid 215 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵))) |
29 | lenegcon1 11336 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 ≤ 𝐵 ↔ -𝐵 ≤ 𝐴)) | |
30 | 29 | anbi1d 633 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐵) ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
31 | 28, 30 | bitrd 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 ℂcc 10727 ℝcr 10728 ≤ cle 10868 -cneg 11063 abscabs 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 |
This theorem is referenced by: absdifle 14882 lenegsq 14884 abs2difabs 14898 abslei 14955 absled 14994 volsup2 24502 efif1olem3 25433 argregt0 25498 argrege0 25499 abscxpbnd 25639 lgseisen 26260 ftc1anclem1 35587 pellexlem5 40358 rexabslelem 42631 |
Copyright terms: Public domain | W3C validator |