MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absle Structured version   Visualization version   GIF version

Theorem absle 15127
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Proof of Theorem absle
StepHypRef Expression
1 simpll 764 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ)
21renegcld 11504 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ)
31recnd 11105 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ)
4 abscl 15090 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 766 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ)
7 leabs 15111 . . . . . . . 8 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 15089 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 5119 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)
132, 5, 6, 11, 12letrd 11234 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴𝐵)
14 leabs 15111 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 723 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12letrd 11234 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴𝐵)
1713, 16jca 512 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴𝐵𝐴𝐵))
1817ex 413 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 → (-𝐴𝐵𝐴𝐵)))
19 absor 15112 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
2019adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
21 breq1 5096 . . . . . . 7 ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) ≤ 𝐵𝐴𝐵))
2221biimprd 247 . . . . . 6 ((abs‘𝐴) = 𝐴 → (𝐴𝐵 → (abs‘𝐴) ≤ 𝐵))
23 breq1 5096 . . . . . . 7 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴𝐵))
2423biimprd 247 . . . . . 6 ((abs‘𝐴) = -𝐴 → (-𝐴𝐵 → (abs‘𝐴) ≤ 𝐵))
2522, 24jaoa 953 . . . . 5 (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴𝐵 ∧ -𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2625ancomsd 466 . . . 4 (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴𝐵𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2720, 26syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) → (abs‘𝐴) ≤ 𝐵))
2818, 27impbid 211 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴𝐵𝐴𝐵)))
29 lenegcon1 11581 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
3029anbi1d 630 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
3128, 30bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105   class class class wbr 5093  cfv 6480  cc 10971  cr 10972  cle 11112  -cneg 11308  abscabs 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-pre-sup 11051
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-sup 9300  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-nn 12076  df-2 12138  df-3 12139  df-n0 12336  df-z 12422  df-uz 12685  df-rp 12833  df-seq 13824  df-exp 13885  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047
This theorem is referenced by:  absdifle  15130  lenegsq  15132  abs2difabs  15146  abslei  15203  absled  15242  volsup2  24876  efif1olem3  25807  argregt0  25872  argrege0  25873  abscxpbnd  26013  lgseisen  26634  ftc1anclem1  36006  pellexlem5  40968  rexabslelem  43345
  Copyright terms: Public domain W3C validator