|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.40b | Structured version Visualization version GIF version | ||
| Description: The antecedent provides a condition implying the converse of 19.40 1886. This is to 19.40 1886 what 19.33b 1885 is to 19.33 1884. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 13-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| 19.40b | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.21 471 | . . . . 5 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | aleximi 1832 | . . . 4 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 3 | pm3.2 469 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 4 | 3 | aleximi 1832 | . . . 4 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 5 | 2, 4 | jaoa 958 | . . 3 ⊢ ((∀𝑥𝜓 ∨ ∀𝑥𝜑) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 6 | 5 | orcoms 873 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 7 | 19.40 1886 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 8 | 6, 7 | impbid1 225 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |