MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unconn Structured version   Visualization version   GIF version

Theorem unconn 22817
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
unconn ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))

Proof of Theorem unconn
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4311 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 uniiun 5023 . . . . . . . . 9 {𝐴, 𝐵} = 𝑘 ∈ {𝐴, 𝐵}𝑘
3 simpl1 1191 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22312 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑋𝐽)
6 simpl2l 1226 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴𝑋)
75, 6ssexd 5286 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴 ∈ V)
8 simpl2r 1227 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵𝑋)
95, 8ssexd 5286 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵 ∈ V)
10 uniprg 4887 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
117, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → {𝐴, 𝐵} = (𝐴𝐵))
122, 11eqtr3id 2785 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑘 ∈ {𝐴, 𝐵}𝑘 = (𝐴𝐵))
1312oveq2d 7378 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) = (𝐽t (𝐴𝐵)))
14 vex 3450 . . . . . . . . . 10 𝑘 ∈ V
1514elpr 4614 . . . . . . . . 9 (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴𝑘 = 𝐵))
16 simpl2 1192 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐴𝑋𝐵𝑋))
17 sseq1 3972 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑘𝑋𝐴𝑋))
1817biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝐴𝑋𝑘𝑋))
19 sseq1 3972 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑘𝑋𝐵𝑋))
2019biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝐵𝑋𝑘𝑋))
2118, 20jaoa 954 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝐴𝑋𝐵𝑋) → 𝑘𝑋))
2216, 21mpan9 507 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑘𝑋)
2315, 22sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑘𝑋)
24 simpl3 1193 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑥 ∈ (𝐴𝐵))
25 elin 3929 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2624, 25sylib 217 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝑥𝐴𝑥𝐵))
27 eleq2 2821 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑥𝑘𝑥𝐴))
2827biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝑥𝐴𝑥𝑘))
29 eleq2 2821 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑥𝑘𝑥𝐵))
3029biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝑥𝐵𝑥𝑘))
3128, 30jaoa 954 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝑥𝐴𝑥𝐵) → 𝑥𝑘))
3226, 31mpan9 507 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑥𝑘)
3315, 32sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑥𝑘)
34 simpr 485 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn))
35 oveq2 7370 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (𝐽t 𝑘) = (𝐽t 𝐴))
3635eleq1d 2817 . . . . . . . . . . . 12 (𝑘 = 𝐴 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐴) ∈ Conn))
3736biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐽t 𝐴) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
38 oveq2 7370 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (𝐽t 𝑘) = (𝐽t 𝐵))
3938eleq1d 2817 . . . . . . . . . . . 12 (𝑘 = 𝐵 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐵) ∈ Conn))
4039biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐽t 𝐵) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
4137, 40jaoa 954 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t 𝑘) ∈ Conn))
4234, 41mpan9 507 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → (𝐽t 𝑘) ∈ Conn)
4315, 42sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → (𝐽t 𝑘) ∈ Conn)
443, 23, 33, 43iunconn 22816 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) ∈ Conn)
4513, 44eqeltrrd 2833 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t (𝐴𝐵)) ∈ Conn)
4645ex 413 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
47463expia 1121 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
4847exlimdv 1936 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
491, 48biimtrid 241 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐵) ≠ ∅ → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
50493impia 1117 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2939  Vcvv 3446  cun 3911  cin 3912  wss 3913  c0 4287  {cpr 4593   cuni 4870   ciun 4959  cfv 6501  (class class class)co 7362  t crest 17316  TopOnctopon 22296  Conncconn 22799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-en 8891  df-fin 8894  df-fi 9356  df-rest 17318  df-topgen 17339  df-top 22280  df-topon 22297  df-bases 22333  df-cld 22407  df-conn 22800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator