MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unconn Structured version   Visualization version   GIF version

Theorem unconn 22608
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
unconn ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))

Proof of Theorem unconn
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4283 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 uniiun 4991 . . . . . . . . 9 {𝐴, 𝐵} = 𝑘 ∈ {𝐴, 𝐵}𝑘
3 simpl1 1189 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22103 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑋𝐽)
6 simpl2l 1224 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴𝑋)
75, 6ssexd 5251 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴 ∈ V)
8 simpl2r 1225 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵𝑋)
95, 8ssexd 5251 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵 ∈ V)
10 uniprg 4858 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
117, 9, 10syl2anc 583 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → {𝐴, 𝐵} = (𝐴𝐵))
122, 11eqtr3id 2787 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑘 ∈ {𝐴, 𝐵}𝑘 = (𝐴𝐵))
1312oveq2d 7311 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) = (𝐽t (𝐴𝐵)))
14 vex 3438 . . . . . . . . . 10 𝑘 ∈ V
1514elpr 4587 . . . . . . . . 9 (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴𝑘 = 𝐵))
16 simpl2 1190 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐴𝑋𝐵𝑋))
17 sseq1 3948 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑘𝑋𝐴𝑋))
1817biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝐴𝑋𝑘𝑋))
19 sseq1 3948 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑘𝑋𝐵𝑋))
2019biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝐵𝑋𝑘𝑋))
2118, 20jaoa 952 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝐴𝑋𝐵𝑋) → 𝑘𝑋))
2216, 21mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑘𝑋)
2315, 22sylan2b 593 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑘𝑋)
24 simpl3 1191 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑥 ∈ (𝐴𝐵))
25 elin 3905 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2624, 25sylib 217 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝑥𝐴𝑥𝐵))
27 eleq2 2822 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑥𝑘𝑥𝐴))
2827biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝑥𝐴𝑥𝑘))
29 eleq2 2822 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑥𝑘𝑥𝐵))
3029biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝑥𝐵𝑥𝑘))
3128, 30jaoa 952 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝑥𝐴𝑥𝐵) → 𝑥𝑘))
3226, 31mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑥𝑘)
3315, 32sylan2b 593 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑥𝑘)
34 simpr 484 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn))
35 oveq2 7303 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (𝐽t 𝑘) = (𝐽t 𝐴))
3635eleq1d 2818 . . . . . . . . . . . 12 (𝑘 = 𝐴 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐴) ∈ Conn))
3736biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐽t 𝐴) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
38 oveq2 7303 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (𝐽t 𝑘) = (𝐽t 𝐵))
3938eleq1d 2818 . . . . . . . . . . . 12 (𝑘 = 𝐵 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐵) ∈ Conn))
4039biimprd 247 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐽t 𝐵) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
4137, 40jaoa 952 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t 𝑘) ∈ Conn))
4234, 41mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → (𝐽t 𝑘) ∈ Conn)
4315, 42sylan2b 593 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → (𝐽t 𝑘) ∈ Conn)
443, 23, 33, 43iunconn 22607 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) ∈ Conn)
4513, 44eqeltrrd 2835 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t (𝐴𝐵)) ∈ Conn)
4645ex 412 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
47463expia 1119 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
4847exlimdv 1932 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
491, 48syl5bi 241 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐵) ≠ ∅ → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
50493impia 1115 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1537  wex 1777  wcel 2101  wne 2938  Vcvv 3434  cun 3887  cin 3888  wss 3889  c0 4259  {cpr 4566   cuni 4841   ciun 4927  cfv 6447  (class class class)co 7295  t crest 17159  TopOnctopon 22087  Conncconn 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-en 8754  df-fin 8757  df-fi 9198  df-rest 17161  df-topgen 17182  df-top 22071  df-topon 22088  df-bases 22124  df-cld 22198  df-conn 22591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator