MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unconn Structured version   Visualization version   GIF version

Theorem unconn 23339
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
unconn ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))

Proof of Theorem unconn
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4298 . . 3 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 uniiun 5002 . . . . . . . . 9 {𝐴, 𝐵} = 𝑘 ∈ {𝐴, 𝐵}𝑘
3 simpl1 1192 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22836 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑋𝐽)
6 simpl2l 1227 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴𝑋)
75, 6ssexd 5257 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐴 ∈ V)
8 simpl2r 1228 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵𝑋)
95, 8ssexd 5257 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝐵 ∈ V)
10 uniprg 4870 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} = (𝐴𝐵))
117, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → {𝐴, 𝐵} = (𝐴𝐵))
122, 11eqtr3id 2780 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑘 ∈ {𝐴, 𝐵}𝑘 = (𝐴𝐵))
1312oveq2d 7357 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) = (𝐽t (𝐴𝐵)))
14 vex 3440 . . . . . . . . . 10 𝑘 ∈ V
1514elpr 4596 . . . . . . . . 9 (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴𝑘 = 𝐵))
16 simpl2 1193 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐴𝑋𝐵𝑋))
17 sseq1 3955 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑘𝑋𝐴𝑋))
1817biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝐴𝑋𝑘𝑋))
19 sseq1 3955 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑘𝑋𝐵𝑋))
2019biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝐵𝑋𝑘𝑋))
2118, 20jaoa 957 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝐴𝑋𝐵𝑋) → 𝑘𝑋))
2216, 21mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑘𝑋)
2315, 22sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑘𝑋)
24 simpl3 1194 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → 𝑥 ∈ (𝐴𝐵))
25 elin 3913 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2624, 25sylib 218 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝑥𝐴𝑥𝐵))
27 eleq2 2820 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (𝑥𝑘𝑥𝐴))
2827biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐴 → (𝑥𝐴𝑥𝑘))
29 eleq2 2820 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (𝑥𝑘𝑥𝐵))
3029biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐵 → (𝑥𝐵𝑥𝑘))
3128, 30jaoa 957 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → ((𝑥𝐴𝑥𝐵) → 𝑥𝑘))
3226, 31mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝑥𝑘)
3315, 32sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑥𝑘)
34 simpr 484 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn))
35 oveq2 7349 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (𝐽t 𝑘) = (𝐽t 𝐴))
3635eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝐴 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐴) ∈ Conn))
3736biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐽t 𝐴) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
38 oveq2 7349 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (𝐽t 𝑘) = (𝐽t 𝐵))
3938eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝐵 → ((𝐽t 𝑘) ∈ Conn ↔ (𝐽t 𝐵) ∈ Conn))
4039biimprd 248 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐽t 𝐵) ∈ Conn → (𝐽t 𝑘) ∈ Conn))
4137, 40jaoa 957 . . . . . . . . . 10 ((𝑘 = 𝐴𝑘 = 𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t 𝑘) ∈ Conn))
4234, 41mpan9 506 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → (𝐽t 𝑘) ∈ Conn)
4315, 42sylan2b 594 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → (𝐽t 𝑘) ∈ Conn)
443, 23, 33, 43iunconn 23338 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t 𝑘 ∈ {𝐴, 𝐵}𝑘) ∈ Conn)
4513, 44eqeltrrd 2832 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) ∧ ((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn)) → (𝐽t (𝐴𝐵)) ∈ Conn)
4645ex 412 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ 𝑥 ∈ (𝐴𝐵)) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
47463expia 1121 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
4847exlimdv 1934 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥 𝑥 ∈ (𝐴𝐵) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
491, 48biimtrid 242 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐵) ≠ ∅ → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn)))
50493impia 1117 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ≠ ∅) → (((𝐽t 𝐴) ∈ Conn ∧ (𝐽t 𝐵) ∈ Conn) → (𝐽t (𝐴𝐵)) ∈ Conn))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  cun 3895  cin 3896  wss 3897  c0 4278  {cpr 4573   cuni 4854   ciun 4936  cfv 6476  (class class class)co 7341  t crest 17319  TopOnctopon 22820  Conncconn 23321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-en 8865  df-fin 8868  df-fi 9290  df-rest 17321  df-topgen 17342  df-top 22804  df-topon 22821  df-bases 22856  df-cld 22929  df-conn 23322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator