Step | Hyp | Ref
| Expression |
1 | | n0 4283 |
. . 3
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵)) |
2 | | uniiun 4991 |
. . . . . . . . 9
⊢ ∪ {𝐴,
𝐵} = ∪ 𝑘 ∈ {𝐴, 𝐵}𝑘 |
3 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | toponmax 22103 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝑋 ∈ 𝐽) |
6 | | simpl2l 1224 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝐴 ⊆ 𝑋) |
7 | 5, 6 | ssexd 5251 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝐴 ∈ V) |
8 | | simpl2r 1225 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝐵 ⊆ 𝑋) |
9 | 5, 8 | ssexd 5251 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝐵 ∈ V) |
10 | | uniprg 4858 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
11 | 7, 9, 10 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
12 | 2, 11 | eqtr3id 2787 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → ∪ 𝑘 ∈ {𝐴, 𝐵}𝑘 = (𝐴 ∪ 𝐵)) |
13 | 12 | oveq2d 7311 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → (𝐽 ↾t ∪ 𝑘 ∈ {𝐴, 𝐵}𝑘) = (𝐽 ↾t (𝐴 ∪ 𝐵))) |
14 | | vex 3438 |
. . . . . . . . . 10
⊢ 𝑘 ∈ V |
15 | 14 | elpr 4587 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) |
16 | | simpl2 1190 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋)) |
17 | | sseq1 3948 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → (𝑘 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
18 | 17 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → (𝐴 ⊆ 𝑋 → 𝑘 ⊆ 𝑋)) |
19 | | sseq1 3948 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → (𝑘 ⊆ 𝑋 ↔ 𝐵 ⊆ 𝑋)) |
20 | 19 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → (𝐵 ⊆ 𝑋 → 𝑘 ⊆ 𝑋)) |
21 | 18, 20 | jaoa 952 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝐴 ∨ 𝑘 = 𝐵) → ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → 𝑘 ⊆ 𝑋)) |
22 | 16, 21 | mpan9 506 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝑘 ⊆ 𝑋) |
23 | 15, 22 | sylan2b 593 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑘 ⊆ 𝑋) |
24 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → 𝑥 ∈ (𝐴 ∩ 𝐵)) |
25 | | elin 3905 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
26 | 24, 25 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
27 | | eleq2 2822 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → (𝑥 ∈ 𝑘 ↔ 𝑥 ∈ 𝐴)) |
28 | 27 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑘)) |
29 | | eleq2 2822 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → (𝑥 ∈ 𝑘 ↔ 𝑥 ∈ 𝐵)) |
30 | 29 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑘)) |
31 | 28, 30 | jaoa 952 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝐴 ∨ 𝑘 = 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑘)) |
32 | 26, 31 | mpan9 506 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝑥 ∈ 𝑘) |
33 | 15, 32 | sylan2b 593 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝑥 ∈ 𝑘) |
34 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) |
35 | | oveq2 7303 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐴 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝐴)) |
36 | 35 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → ((𝐽 ↾t 𝑘) ∈ Conn ↔ (𝐽 ↾t 𝐴) ∈ Conn)) |
37 | 36 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐴 → ((𝐽 ↾t 𝐴) ∈ Conn → (𝐽 ↾t 𝑘) ∈ Conn)) |
38 | | oveq2 7303 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐵 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝐵)) |
39 | 38 | eleq1d 2818 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → ((𝐽 ↾t 𝑘) ∈ Conn ↔ (𝐽 ↾t 𝐵) ∈ Conn)) |
40 | 39 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐵 → ((𝐽 ↾t 𝐵) ∈ Conn → (𝐽 ↾t 𝑘) ∈ Conn)) |
41 | 37, 40 | jaoa 952 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝐴 ∨ 𝑘 = 𝐵) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t 𝑘) ∈ Conn)) |
42 | 34, 41 | mpan9 506 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → (𝐽 ↾t 𝑘) ∈ Conn) |
43 | 15, 42 | sylan2b 593 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) ∧ 𝑘 ∈ {𝐴, 𝐵}) → (𝐽 ↾t 𝑘) ∈ Conn) |
44 | 3, 23, 33, 43 | iunconn 22607 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → (𝐽 ↾t ∪ 𝑘 ∈ {𝐴, 𝐵}𝑘) ∈ Conn) |
45 | 13, 44 | eqeltrrd 2835 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn)) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn) |
46 | 45 | ex 412 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) |
47 | 46 | 3expia 1119 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋)) → (𝑥 ∈ (𝐴 ∩ 𝐵) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn))) |
48 | 47 | exlimdv 1932 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋)) → (∃𝑥 𝑥 ∈ (𝐴 ∩ 𝐵) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn))) |
49 | 1, 48 | syl5bi 241 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋)) → ((𝐴 ∩ 𝐵) ≠ ∅ → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn))) |
50 | 49 | 3impia 1115 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∩ 𝐵) ≠ ∅) → (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐽 ↾t 𝐵) ∈ Conn) → (𝐽 ↾t (𝐴 ∪ 𝐵)) ∈ Conn)) |