Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem4 Structured version   Visualization version   GIF version

Theorem dfon2lem4 33035
Description: Lemma for dfon2 33041. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.)
Hypotheses
Ref Expression
dfon2lem4.1 𝐴 ∈ V
dfon2lem4.2 𝐵 ∈ V
Assertion
Ref Expression
dfon2lem4 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem dfon2lem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 inss1 4208 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
21sseli 3966 . . . . . . . 8 ((𝐴𝐵) ∈ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐴)
3 dfon2lem4.1 . . . . . . . . . . . 12 𝐴 ∈ V
4 dfon2lem3 33034 . . . . . . . . . . . 12 (𝐴 ∈ V → (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧)))
53, 4ax-mp 5 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (Tr 𝐴 ∧ ∀𝑧𝐴 ¬ 𝑧𝑧))
65simprd 498 . . . . . . . . . 10 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → ∀𝑧𝐴 ¬ 𝑧𝑧)
7 eleq1 2903 . . . . . . . . . . . . 13 (𝑧 = (𝐴𝐵) → (𝑧𝑧 ↔ (𝐴𝐵) ∈ 𝑧))
8 eleq2 2904 . . . . . . . . . . . . 13 (𝑧 = (𝐴𝐵) → ((𝐴𝐵) ∈ 𝑧 ↔ (𝐴𝐵) ∈ (𝐴𝐵)))
97, 8bitrd 281 . . . . . . . . . . . 12 (𝑧 = (𝐴𝐵) → (𝑧𝑧 ↔ (𝐴𝐵) ∈ (𝐴𝐵)))
109notbid 320 . . . . . . . . . . 11 (𝑧 = (𝐴𝐵) → (¬ 𝑧𝑧 ↔ ¬ (𝐴𝐵) ∈ (𝐴𝐵)))
1110rspccv 3623 . . . . . . . . . 10 (∀𝑧𝐴 ¬ 𝑧𝑧 → ((𝐴𝐵) ∈ 𝐴 → ¬ (𝐴𝐵) ∈ (𝐴𝐵)))
126, 11syl 17 . . . . . . . . 9 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → ((𝐴𝐵) ∈ 𝐴 → ¬ (𝐴𝐵) ∈ (𝐴𝐵)))
1312adantr 483 . . . . . . . 8 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵) ∈ 𝐴 → ¬ (𝐴𝐵) ∈ (𝐴𝐵)))
142, 13syl5 34 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵) ∈ (𝐴𝐵) → ¬ (𝐴𝐵) ∈ (𝐴𝐵)))
1514pm2.01d 192 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ¬ (𝐴𝐵) ∈ (𝐴𝐵))
16 elin 4172 . . . . . 6 ((𝐴𝐵) ∈ (𝐴𝐵) ↔ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
1715, 16sylnib 330 . . . . 5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ¬ ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵))
185simpld 497 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → Tr 𝐴)
19 dfon2lem4.2 . . . . . . . . . 10 𝐵 ∈ V
20 dfon2lem3 33034 . . . . . . . . . 10 (𝐵 ∈ V → (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧)))
2119, 20ax-mp 5 . . . . . . . . 9 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (Tr 𝐵 ∧ ∀𝑧𝐵 ¬ 𝑧𝑧))
2221simpld 497 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → Tr 𝐵)
23 trin 5185 . . . . . . . 8 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
2418, 22, 23syl2an 597 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → Tr (𝐴𝐵))
253inex1 5224 . . . . . . . . 9 (𝐴𝐵) ∈ V
26 psseq1 4067 . . . . . . . . . . 11 (𝑥 = (𝐴𝐵) → (𝑥𝐴 ↔ (𝐴𝐵) ⊊ 𝐴))
27 treq 5181 . . . . . . . . . . 11 (𝑥 = (𝐴𝐵) → (Tr 𝑥 ↔ Tr (𝐴𝐵)))
2826, 27anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐴𝐵) → ((𝑥𝐴 ∧ Tr 𝑥) ↔ ((𝐴𝐵) ⊊ 𝐴 ∧ Tr (𝐴𝐵))))
29 eleq1 2903 . . . . . . . . . 10 (𝑥 = (𝐴𝐵) → (𝑥𝐴 ↔ (𝐴𝐵) ∈ 𝐴))
3028, 29imbi12d 347 . . . . . . . . 9 (𝑥 = (𝐴𝐵) → (((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ↔ (((𝐴𝐵) ⊊ 𝐴 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐴)))
3125, 30spcv 3609 . . . . . . . 8 (∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) → (((𝐴𝐵) ⊊ 𝐴 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐴))
3231adantr 483 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵) ⊊ 𝐴 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐴))
3324, 32mpan2d 692 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵) ⊊ 𝐴 → (𝐴𝐵) ∈ 𝐴))
34 psseq1 4067 . . . . . . . . . . 11 (𝑦 = (𝐴𝐵) → (𝑦𝐵 ↔ (𝐴𝐵) ⊊ 𝐵))
35 treq 5181 . . . . . . . . . . 11 (𝑦 = (𝐴𝐵) → (Tr 𝑦 ↔ Tr (𝐴𝐵)))
3634, 35anbi12d 632 . . . . . . . . . 10 (𝑦 = (𝐴𝐵) → ((𝑦𝐵 ∧ Tr 𝑦) ↔ ((𝐴𝐵) ⊊ 𝐵 ∧ Tr (𝐴𝐵))))
37 eleq1 2903 . . . . . . . . . 10 (𝑦 = (𝐴𝐵) → (𝑦𝐵 ↔ (𝐴𝐵) ∈ 𝐵))
3836, 37imbi12d 347 . . . . . . . . 9 (𝑦 = (𝐴𝐵) → (((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) ↔ (((𝐴𝐵) ⊊ 𝐵 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐵)))
3925, 38spcv 3609 . . . . . . . 8 (∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵) → (((𝐴𝐵) ⊊ 𝐵 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐵))
4039adantl 484 . . . . . . 7 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵) ⊊ 𝐵 ∧ Tr (𝐴𝐵)) → (𝐴𝐵) ∈ 𝐵))
4124, 40mpan2d 692 . . . . . 6 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵) ⊊ 𝐵 → (𝐴𝐵) ∈ 𝐵))
4233, 41anim12d 610 . . . . 5 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (((𝐴𝐵) ⊊ 𝐴 ∧ (𝐴𝐵) ⊊ 𝐵) → ((𝐴𝐵) ∈ 𝐴 ∧ (𝐴𝐵) ∈ 𝐵)))
4317, 42mtod 200 . . . 4 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ¬ ((𝐴𝐵) ⊊ 𝐴 ∧ (𝐴𝐵) ⊊ 𝐵))
44 ianor 978 . . . 4 (¬ ((𝐴𝐵) ⊊ 𝐴 ∧ (𝐴𝐵) ⊊ 𝐵) ↔ (¬ (𝐴𝐵) ⊊ 𝐴 ∨ ¬ (𝐴𝐵) ⊊ 𝐵))
4543, 44sylib 220 . . 3 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (¬ (𝐴𝐵) ⊊ 𝐴 ∨ ¬ (𝐴𝐵) ⊊ 𝐵))
46 sspss 4079 . . . . 5 ((𝐴𝐵) ⊆ 𝐴 ↔ ((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) = 𝐴))
471, 46mpbi 232 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) = 𝐴)
48 inss2 4209 . . . . 5 (𝐴𝐵) ⊆ 𝐵
49 sspss 4079 . . . . 5 ((𝐴𝐵) ⊆ 𝐵 ↔ ((𝐴𝐵) ⊊ 𝐵 ∨ (𝐴𝐵) = 𝐵))
5048, 49mpbi 232 . . . 4 ((𝐴𝐵) ⊊ 𝐵 ∨ (𝐴𝐵) = 𝐵)
51 orel1 885 . . . . . 6 (¬ (𝐴𝐵) ⊊ 𝐴 → (((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) = 𝐴) → (𝐴𝐵) = 𝐴))
52 orc 863 . . . . . 6 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵))
5351, 52syl6 35 . . . . 5 (¬ (𝐴𝐵) ⊊ 𝐴 → (((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) = 𝐴) → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵)))
54 orel1 885 . . . . . 6 (¬ (𝐴𝐵) ⊊ 𝐵 → (((𝐴𝐵) ⊊ 𝐵 ∨ (𝐴𝐵) = 𝐵) → (𝐴𝐵) = 𝐵))
55 olc 864 . . . . . 6 ((𝐴𝐵) = 𝐵 → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵))
5654, 55syl6 35 . . . . 5 (¬ (𝐴𝐵) ⊊ 𝐵 → (((𝐴𝐵) ⊊ 𝐵 ∨ (𝐴𝐵) = 𝐵) → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵)))
5753, 56jaoa 952 . . . 4 ((¬ (𝐴𝐵) ⊊ 𝐴 ∨ ¬ (𝐴𝐵) ⊊ 𝐵) → ((((𝐴𝐵) ⊊ 𝐴 ∨ (𝐴𝐵) = 𝐴) ∧ ((𝐴𝐵) ⊊ 𝐵 ∨ (𝐴𝐵) = 𝐵)) → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵)))
5847, 50, 57mp2ani 696 . . 3 ((¬ (𝐴𝐵) ⊊ 𝐴 ∨ ¬ (𝐴𝐵) ⊊ 𝐵) → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵))
5945, 58syl 17 . 2 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵))
60 df-ss 3955 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
61 sseqin2 4195 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
6260, 61orbi12i 911 . 2 ((𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵) = 𝐴 ∨ (𝐴𝐵) = 𝐵))
6359, 62sylibr 236 1 ((∀𝑥((𝑥𝐴 ∧ Tr 𝑥) → 𝑥𝐴) ∧ ∀𝑦((𝑦𝐵 ∧ Tr 𝑦) → 𝑦𝐵)) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  wal 1534   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  cin 3938  wss 3939  wpss 3940  Tr wtr 5175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-pw 4544  df-sn 4571  df-pr 4573  df-uni 4842  df-iun 4924  df-tr 5176  df-suc 6200
This theorem is referenced by:  dfon2lem5  33036
  Copyright terms: Public domain W3C validator