Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abslt | Structured version Visualization version GIF version |
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abslt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℝ) | |
2 | 1 | renegcld 11110 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ∈ ℝ) |
3 | 1 | recnd 10712 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℂ) |
4 | abscl 14691 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) ∈ ℝ) |
6 | simplr 768 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ∈ ℝ) | |
7 | leabs 14712 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘-𝐴)) |
9 | absneg 14690 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | |
10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘-𝐴) = (abs‘𝐴)) |
11 | 8, 10 | breqtrd 5061 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 ≤ (abs‘𝐴)) |
12 | simpr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < 𝐵) | |
13 | 2, 5, 6, 11, 12 | lelttrd 10841 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → -𝐴 < 𝐵) |
14 | leabs 14712 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) | |
15 | 14 | ad2antrr 725 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ≤ (abs‘𝐴)) |
16 | 1, 5, 6, 15, 12 | lelttrd 10841 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 < 𝐵) |
17 | 13, 16 | jca 515 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵)) |
18 | 17 | ex 416 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 → (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵))) |
19 | absor 14713 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) | |
20 | 19 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴)) |
21 | breq1 5038 | . . . . . . 7 ⊢ ((abs‘𝐴) = 𝐴 → ((abs‘𝐴) < 𝐵 ↔ 𝐴 < 𝐵)) | |
22 | 21 | biimprd 251 | . . . . . 6 ⊢ ((abs‘𝐴) = 𝐴 → (𝐴 < 𝐵 → (abs‘𝐴) < 𝐵)) |
23 | breq1 5038 | . . . . . . 7 ⊢ ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) < 𝐵 ↔ -𝐴 < 𝐵)) | |
24 | 23 | biimprd 251 | . . . . . 6 ⊢ ((abs‘𝐴) = -𝐴 → (-𝐴 < 𝐵 → (abs‘𝐴) < 𝐵)) |
25 | 22, 24 | jaoa 953 | . . . . 5 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((𝐴 < 𝐵 ∧ -𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
26 | 25 | ancomsd 469 | . . . 4 ⊢ (((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
27 | 20, 26 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) → (abs‘𝐴) < 𝐵)) |
28 | 18, 27 | impbid 215 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐴 < 𝐵 ∧ 𝐴 < 𝐵))) |
29 | ltnegcon1 11184 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 < 𝐵 ↔ -𝐵 < 𝐴)) | |
30 | 29 | anbi1d 632 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴 < 𝐵 ∧ 𝐴 < 𝐵) ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
31 | 28, 30 | bitrd 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 class class class wbr 5035 ‘cfv 6339 ℂcc 10578 ℝcr 10579 < clt 10718 ≤ cle 10719 -cneg 10914 abscabs 14646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 |
This theorem is referenced by: absdiflt 14730 abslti 14803 absltd 14842 tanregt0 25235 argregt0 25305 efopnlem2 25352 ftc1anclem1 35436 dvasin 35447 liminflimsupclim 42843 stoweidlem7 43043 |
Copyright terms: Public domain | W3C validator |