| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > keephyp2v | Structured version Visualization version GIF version | ||
| Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth 4564). (Contributed by NM, 16-Apr-2005.) |
| Ref | Expression |
|---|---|
| keephyp2v.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) |
| keephyp2v.2 | ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) |
| keephyp2v.3 | ⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) |
| keephyp2v.4 | ⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) |
| keephyp2v.5 | ⊢ 𝜓 |
| keephyp2v.6 | ⊢ 𝜏 |
| Ref | Expression |
|---|---|
| keephyp2v | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | keephyp2v.5 | . . 3 ⊢ 𝜓 | |
| 2 | iftrue 4511 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐴) | |
| 3 | 2 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐶)) |
| 4 | keephyp2v.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | iftrue 4511 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐵) | |
| 7 | 6 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝐷)) |
| 8 | keephyp2v.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 10 | 5, 9 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 11 | 1, 10 | mpbii 233 | . 2 ⊢ (𝜑 → 𝜃) |
| 12 | keephyp2v.6 | . . 3 ⊢ 𝜏 | |
| 13 | iffalse 4514 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) | |
| 14 | 13 | eqcomd 2742 | . . . . 5 ⊢ (¬ 𝜑 → 𝐶 = if(𝜑, 𝐴, 𝐶)) |
| 15 | keephyp2v.3 | . . . . 5 ⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜏 ↔ 𝜂)) |
| 17 | iffalse 4514 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐷) | |
| 18 | 17 | eqcomd 2742 | . . . . 5 ⊢ (¬ 𝜑 → 𝐷 = if(𝜑, 𝐵, 𝐷)) |
| 19 | keephyp2v.4 | . . . . 5 ⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜂 ↔ 𝜃)) |
| 21 | 16, 20 | bitrd 279 | . . 3 ⊢ (¬ 𝜑 → (𝜏 ↔ 𝜃)) |
| 22 | 12, 21 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜃) |
| 23 | 11, 22 | pm2.61i 182 | 1 ⊢ 𝜃 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |