|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > keephyp2v | Structured version Visualization version GIF version | ||
| Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth 4584). (Contributed by NM, 16-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| keephyp2v.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) | 
| keephyp2v.2 | ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) | 
| keephyp2v.3 | ⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) | 
| keephyp2v.4 | ⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) | 
| keephyp2v.5 | ⊢ 𝜓 | 
| keephyp2v.6 | ⊢ 𝜏 | 
| Ref | Expression | 
|---|---|
| keephyp2v | ⊢ 𝜃 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | keephyp2v.5 | . . 3 ⊢ 𝜓 | |
| 2 | iftrue 4531 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐴) | |
| 3 | 2 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐶)) | 
| 4 | keephyp2v.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐶) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| 6 | iftrue 4531 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐵) | |
| 7 | 6 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝐷)) | 
| 8 | keephyp2v.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐵, 𝐷) → (𝜒 ↔ 𝜃)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | 
| 10 | 5, 9 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| 11 | 1, 10 | mpbii 233 | . 2 ⊢ (𝜑 → 𝜃) | 
| 12 | keephyp2v.6 | . . 3 ⊢ 𝜏 | |
| 13 | iffalse 4534 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐶) = 𝐶) | |
| 14 | 13 | eqcomd 2743 | . . . . 5 ⊢ (¬ 𝜑 → 𝐶 = if(𝜑, 𝐴, 𝐶)) | 
| 15 | keephyp2v.3 | . . . . 5 ⊢ (𝐶 = if(𝜑, 𝐴, 𝐶) → (𝜏 ↔ 𝜂)) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜏 ↔ 𝜂)) | 
| 17 | iffalse 4534 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐷) = 𝐷) | |
| 18 | 17 | eqcomd 2743 | . . . . 5 ⊢ (¬ 𝜑 → 𝐷 = if(𝜑, 𝐵, 𝐷)) | 
| 19 | keephyp2v.4 | . . . . 5 ⊢ (𝐷 = if(𝜑, 𝐵, 𝐷) → (𝜂 ↔ 𝜃)) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜂 ↔ 𝜃)) | 
| 21 | 16, 20 | bitrd 279 | . . 3 ⊢ (¬ 𝜑 → (𝜏 ↔ 𝜃)) | 
| 22 | 12, 21 | mpbii 233 | . 2 ⊢ (¬ 𝜑 → 𝜃) | 
| 23 | 11, 22 | pm2.61i 182 | 1 ⊢ 𝜃 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ifcif 4525 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4526 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |