Proof of Theorem keephyp3v
Step | Hyp | Ref
| Expression |
1 | | keephyp3v.7 |
. . 3
⊢ 𝜌 |
2 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐴) |
3 | 2 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐷)) |
4 | | keephyp3v.1 |
. . . . 5
⊢ (𝐴 = if(𝜑, 𝐴, 𝐷) → (𝜌 ↔ 𝜒)) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜌 ↔ 𝜒)) |
6 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐵, 𝑅) = 𝐵) |
7 | 6 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐵 = if(𝜑, 𝐵, 𝑅)) |
8 | | keephyp3v.2 |
. . . . 5
⊢ (𝐵 = if(𝜑, 𝐵, 𝑅) → (𝜒 ↔ 𝜃)) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
10 | | iftrue 4462 |
. . . . . 6
⊢ (𝜑 → if(𝜑, 𝐶, 𝑆) = 𝐶) |
11 | 10 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐶 = if(𝜑, 𝐶, 𝑆)) |
12 | | keephyp3v.3 |
. . . . 5
⊢ (𝐶 = if(𝜑, 𝐶, 𝑆) → (𝜃 ↔ 𝜏)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
14 | 5, 9, 13 | 3bitrd 304 |
. . 3
⊢ (𝜑 → (𝜌 ↔ 𝜏)) |
15 | 1, 14 | mpbii 232 |
. 2
⊢ (𝜑 → 𝜏) |
16 | | keephyp3v.8 |
. . 3
⊢ 𝜂 |
17 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐴, 𝐷) = 𝐷) |
18 | 17 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝐷 = if(𝜑, 𝐴, 𝐷)) |
19 | | keephyp3v.4 |
. . . . 5
⊢ (𝐷 = if(𝜑, 𝐴, 𝐷) → (𝜂 ↔ 𝜁)) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜂 ↔ 𝜁)) |
21 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐵, 𝑅) = 𝑅) |
22 | 21 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝑅 = if(𝜑, 𝐵, 𝑅)) |
23 | | keephyp3v.5 |
. . . . 5
⊢ (𝑅 = if(𝜑, 𝐵, 𝑅) → (𝜁 ↔ 𝜎)) |
24 | 22, 23 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜁 ↔ 𝜎)) |
25 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝜑 → if(𝜑, 𝐶, 𝑆) = 𝑆) |
26 | 25 | eqcomd 2744 |
. . . . 5
⊢ (¬
𝜑 → 𝑆 = if(𝜑, 𝐶, 𝑆)) |
27 | | keephyp3v.6 |
. . . . 5
⊢ (𝑆 = if(𝜑, 𝐶, 𝑆) → (𝜎 ↔ 𝜏)) |
28 | 26, 27 | syl 17 |
. . . 4
⊢ (¬
𝜑 → (𝜎 ↔ 𝜏)) |
29 | 20, 24, 28 | 3bitrd 304 |
. . 3
⊢ (¬
𝜑 → (𝜂 ↔ 𝜏)) |
30 | 16, 29 | mpbii 232 |
. 2
⊢ (¬
𝜑 → 𝜏) |
31 | 15, 30 | pm2.61i 182 |
1
⊢ 𝜏 |