Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version |
Description: A quantifier-free definition of ω that does not depend on ax-inf 9326. (Note: label was changed from dfom5 9338 to dfom5b 34141 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4882 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
3 | vex 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ellimits 34139 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
5 | 4 | imbi1i 349 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
6 | 5 | albii 1823 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
7 | 2, 6 | bitr2i 275 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
8 | 7 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
9 | elom 7690 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
10 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
11 | 8, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
12 | 11 | eqriv 2735 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ∩ cint 4876 Oncon0 6251 Lim wlim 6252 ωcom 7687 Limits climits 34065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ord 6254 df-on 6255 df-lim 6256 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-txp 34083 df-bigcup 34087 df-fix 34088 df-limits 34089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |