| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version | ||
| Description: A quantifier-free definition of ω that does not depend on ax-inf 9528. (Note: label was changed from dfom5 9540 to dfom5b 35954 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elint 4901 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
| 3 | vex 3440 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 4 | 3 | ellimits 35952 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
| 5 | 4 | imbi1i 349 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
| 6 | 5 | albii 1820 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
| 7 | 2, 6 | bitr2i 276 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
| 8 | 7 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
| 9 | elom 7799 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
| 10 | elin 3913 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
| 12 | 11 | eqriv 2728 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ∩ cint 4895 Oncon0 6306 Lim wlim 6307 ωcom 7796 Limits climits 35878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ord 6309 df-on 6310 df-lim 6311 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-txp 35896 df-bigcup 35900 df-fix 35901 df-limits 35902 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |