Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfom5b Structured version   Visualization version   GIF version

Theorem dfom5b 35873
Description: A quantifier-free definition of ω that does not depend on ax-inf 9567. (Note: label was changed from dfom5 9579 to dfom5b 35873 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
dfom5b ω = (On ∩ Limits )

Proof of Theorem dfom5b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . . 6 𝑥 ∈ V
21elint 4912 . . . . 5 (𝑥 Limits ↔ ∀𝑦(𝑦 Limits 𝑥𝑦))
3 vex 3448 . . . . . . . 8 𝑦 ∈ V
43ellimits 35871 . . . . . . 7 (𝑦 Limits ↔ Lim 𝑦)
54imbi1i 349 . . . . . 6 ((𝑦 Limits 𝑥𝑦) ↔ (Lim 𝑦𝑥𝑦))
65albii 1819 . . . . 5 (∀𝑦(𝑦 Limits 𝑥𝑦) ↔ ∀𝑦(Lim 𝑦𝑥𝑦))
72, 6bitr2i 276 . . . 4 (∀𝑦(Lim 𝑦𝑥𝑦) ↔ 𝑥 Limits )
87anbi2i 623 . . 3 ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 Limits ))
9 elom 7825 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
10 elin 3927 . . 3 (𝑥 ∈ (On ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 Limits ))
118, 9, 103bitr4i 303 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Limits ))
1211eqriv 2726 1 ω = (On ∩ Limits )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  cin 3910   cint 4906  Oncon0 6320  Lim wlim 6321  ωcom 7822   Limits climits 35797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ord 6323  df-on 6324  df-lim 6325  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-txp 35815  df-bigcup 35819  df-fix 35820  df-limits 35821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator