![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version |
Description: A quantifier-free definition of ω that does not depend on ax-inf 8784. (Note: label was changed from dfom5 8796 to dfom5b 32525 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3387 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4672 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
3 | vex 3387 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ellimits 32523 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
5 | 4 | imbi1i 341 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
6 | 5 | albii 1915 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
7 | 2, 6 | bitr2i 268 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
8 | 7 | anbi2i 617 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
9 | elom 7301 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
10 | elin 3993 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
11 | 8, 9, 10 | 3bitr4i 295 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
12 | 11 | eqriv 2795 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wal 1651 = wceq 1653 ∈ wcel 2157 ∩ cin 3767 ∩ cint 4666 Oncon0 5940 Lim wlim 5941 ωcom 7298 Limits climits 32449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-sbc 3633 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-symdif 4040 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-op 4374 df-uni 4628 df-int 4667 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ord 5943 df-on 5944 df-lim 5945 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-fo 6106 df-fv 6108 df-om 7299 df-1st 7400 df-2nd 7401 df-txp 32467 df-bigcup 32471 df-fix 32472 df-limits 32473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |