Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfom5b Structured version   Visualization version   GIF version

Theorem dfom5b 35888
Description: A quantifier-free definition of ω that does not depend on ax-inf 9660. (Note: label was changed from dfom5 9672 to dfom5b 35888 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
dfom5b ω = (On ∩ Limits )

Proof of Theorem dfom5b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3467 . . . . . 6 𝑥 ∈ V
21elint 4932 . . . . 5 (𝑥 Limits ↔ ∀𝑦(𝑦 Limits 𝑥𝑦))
3 vex 3467 . . . . . . . 8 𝑦 ∈ V
43ellimits 35886 . . . . . . 7 (𝑦 Limits ↔ Lim 𝑦)
54imbi1i 349 . . . . . 6 ((𝑦 Limits 𝑥𝑦) ↔ (Lim 𝑦𝑥𝑦))
65albii 1818 . . . . 5 (∀𝑦(𝑦 Limits 𝑥𝑦) ↔ ∀𝑦(Lim 𝑦𝑥𝑦))
72, 6bitr2i 276 . . . 4 (∀𝑦(Lim 𝑦𝑥𝑦) ↔ 𝑥 Limits )
87anbi2i 623 . . 3 ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 Limits ))
9 elom 7872 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
10 elin 3947 . . 3 (𝑥 ∈ (On ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 Limits ))
118, 9, 103bitr4i 303 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Limits ))
1211eqriv 2731 1 ω = (On ∩ Limits )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2107  cin 3930   cint 4926  Oncon0 6363  Lim wlim 6364  ωcom 7869   Limits climits 35812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-symdif 4233  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ord 6366  df-on 6367  df-lim 6368  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-om 7870  df-1st 7996  df-2nd 7997  df-txp 35830  df-bigcup 35834  df-fix 35835  df-limits 35836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator