![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version |
Description: A quantifier-free definition of ω that does not depend on ax-inf 9682. (Note: label was changed from dfom5 9694 to dfom5b 35906 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3483 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4958 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
3 | vex 3483 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ellimits 35904 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
5 | 4 | imbi1i 349 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
6 | 5 | albii 1817 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
7 | 2, 6 | bitr2i 276 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
8 | 7 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
9 | elom 7894 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
10 | elin 3980 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
12 | 11 | eqriv 2733 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1536 = wceq 1538 ∈ wcel 2107 ∩ cin 3963 ∩ cint 4952 Oncon0 6389 Lim wlim 6390 ωcom 7891 Limits climits 35830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-symdif 4260 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ord 6392 df-on 6393 df-lim 6394 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-fo 6572 df-fv 6574 df-om 7892 df-1st 8019 df-2nd 8020 df-txp 35848 df-bigcup 35852 df-fix 35853 df-limits 35854 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |