| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1737 onint 7729 oalimcl 8481 oeordsuc 8515 fisup2g 9360 fiinf2g 9393 zorn2lem7 10400 inar1 10673 rpnnen1lem5 12881 expnbnd 14141 facwordi 14198 fi1uzind 14416 brfi1indALT 14419 unbenlem 16822 fiinopn 22817 cmpsublem 23315 dvcnvrelem1 25950 nocvxminlem 27718 onsfi 28284 axcontlem4 28947 axcont 28956 spansncol 31550 atcvat4i 32379 sumdmdlem 32400 broutsideof2 36187 relowlpssretop 37429 cvrat4 39562 pm2.43cbi 44635 |
| Copyright terms: Public domain | W3C validator |