| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1736 onint 7768 oalimcl 8526 oeordsuc 8560 fisup2g 9426 fiinf2g 9459 zorn2lem7 10461 inar1 10734 rpnnen1lem5 12946 expnbnd 14203 facwordi 14260 fi1uzind 14478 brfi1indALT 14481 unbenlem 16885 fiinopn 22794 cmpsublem 23292 dvcnvrelem1 25928 nocvxminlem 27695 onsfi 28253 axcontlem4 28900 axcont 28909 spansncol 31503 atcvat4i 32332 sumdmdlem 32353 broutsideof2 36105 relowlpssretop 37347 cvrat4 39432 pm2.43cbi 44501 |
| Copyright terms: Public domain | W3C validator |