| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1737 onint 7723 oalimcl 8475 oeordsuc 8509 fisup2g 9353 fiinf2g 9386 zorn2lem7 10390 inar1 10663 rpnnen1lem5 12876 expnbnd 14136 facwordi 14193 fi1uzind 14411 brfi1indALT 14414 unbenlem 16817 fiinopn 22814 cmpsublem 23312 dvcnvrelem1 25947 nocvxminlem 27715 onsfi 28281 axcontlem4 28943 axcont 28952 spansncol 31543 atcvat4i 32372 sumdmdlem 32393 broutsideof2 36155 relowlpssretop 37397 cvrat4 39481 pm2.43cbi 44550 |
| Copyright terms: Public domain | W3C validator |