Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1346 merco2 1740 onint 7617 oalimcl 8353 oeordsuc 8387 fisup2g 9157 fiinf2g 9189 zorn2lem7 10189 inar1 10462 rpnnen1lem5 12650 expnbnd 13875 facwordi 13931 fi1uzind 14139 brfi1indALT 14142 unbenlem 16537 fiinopn 21958 cmpsublem 22458 dvcnvrelem1 25086 axcontlem4 27238 axcont 27247 spansncol 29831 atcvat4i 30660 sumdmdlem 30681 nocvxminlem 33899 broutsideof2 34351 relowlpssretop 35462 cvrat4 37384 pm2.43cbi 42027 |
Copyright terms: Public domain | W3C validator |