| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1736 onint 7766 oalimcl 8524 oeordsuc 8558 fisup2g 9420 fiinf2g 9453 zorn2lem7 10455 inar1 10728 rpnnen1lem5 12940 expnbnd 14197 facwordi 14254 fi1uzind 14472 brfi1indALT 14475 unbenlem 16879 fiinopn 22788 cmpsublem 23286 dvcnvrelem1 25922 nocvxminlem 27689 onsfi 28247 axcontlem4 28894 axcont 28903 spansncol 31497 atcvat4i 32326 sumdmdlem 32347 broutsideof2 36110 relowlpssretop 37352 cvrat4 39437 pm2.43cbi 44508 |
| Copyright terms: Public domain | W3C validator |