![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1735 onint 7817 oalimcl 8606 oeordsuc 8640 fisup2g 9515 fiinf2g 9547 zorn2lem7 10549 inar1 10822 rpnnen1lem5 13030 expnbnd 14277 facwordi 14334 fi1uzind 14552 brfi1indALT 14555 unbenlem 16951 fiinopn 22932 cmpsublem 23432 dvcnvrelem1 26082 nocvxminlem 27848 axcontlem4 29008 axcont 29017 spansncol 31613 atcvat4i 32442 sumdmdlem 32463 broutsideof2 36117 relowlpssretop 37359 cvrat4 39440 pm2.43cbi 44531 |
Copyright terms: Public domain | W3C validator |