| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1349 merco2 1736 onint 7730 oalimcl 8485 oeordsuc 8519 fisup2g 9378 fiinf2g 9411 zorn2lem7 10415 inar1 10688 rpnnen1lem5 12900 expnbnd 14157 facwordi 14214 fi1uzind 14432 brfi1indALT 14435 unbenlem 16838 fiinopn 22804 cmpsublem 23302 dvcnvrelem1 25938 nocvxminlem 27706 onsfi 28270 axcontlem4 28930 axcont 28939 spansncol 31530 atcvat4i 32359 sumdmdlem 32380 broutsideof2 36095 relowlpssretop 37337 cvrat4 39422 pm2.43cbi 44492 |
| Copyright terms: Public domain | W3C validator |