Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1347 merco2 1739 onint 7640 oalimcl 8391 oeordsuc 8425 fisup2g 9227 fiinf2g 9259 zorn2lem7 10258 inar1 10531 rpnnen1lem5 12721 expnbnd 13947 facwordi 14003 fi1uzind 14211 brfi1indALT 14214 unbenlem 16609 fiinopn 22050 cmpsublem 22550 dvcnvrelem1 25181 axcontlem4 27335 axcont 27344 spansncol 29930 atcvat4i 30759 sumdmdlem 30780 nocvxminlem 33972 broutsideof2 34424 relowlpssretop 35535 cvrat4 37457 pm2.43cbi 42138 |
Copyright terms: Public domain | W3C validator |