| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version | ||
| Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
| 3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1348 merco2 1735 onint 7792 oalimcl 8580 oeordsuc 8614 fisup2g 9490 fiinf2g 9522 zorn2lem7 10524 inar1 10797 rpnnen1lem5 13005 expnbnd 14253 facwordi 14310 fi1uzind 14528 brfi1indALT 14531 unbenlem 16928 fiinopn 22855 cmpsublem 23353 dvcnvrelem1 25992 nocvxminlem 27758 axcontlem4 28912 axcont 28921 spansncol 31515 atcvat4i 32344 sumdmdlem 32365 broutsideof2 36082 relowlpssretop 37324 cvrat4 39404 pm2.43cbi 44495 |
| Copyright terms: Public domain | W3C validator |