![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1345 merco2 1730 onint 7792 oalimcl 8579 oeordsuc 8613 fisup2g 9491 fiinf2g 9523 zorn2lem7 10525 inar1 10798 rpnnen1lem5 12995 expnbnd 14226 facwordi 14280 fi1uzind 14490 brfi1indALT 14493 unbenlem 16876 fiinopn 22833 cmpsublem 23333 dvcnvrelem1 25980 nocvxminlem 27740 axcontlem4 28834 axcont 28843 spansncol 31434 atcvat4i 32263 sumdmdlem 32284 broutsideof2 35788 relowlpssretop 36913 cvrat4 38985 pm2.43cbi 44022 |
Copyright terms: Public domain | W3C validator |