Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > com4l | Structured version Visualization version GIF version |
Description: Commutation of antecedents. Rotate left. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
com4l | ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com3l 89 | . 2 ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜃 → 𝜏)))) |
3 | 2 | com34 91 | 1 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com4t 93 com4r 94 com14 96 com5l 100 3impd 1346 merco2 1742 onint 7630 oalimcl 8367 oeordsuc 8401 fisup2g 9188 fiinf2g 9220 zorn2lem7 10242 inar1 10515 rpnnen1lem5 12703 expnbnd 13928 facwordi 13984 fi1uzind 14192 brfi1indALT 14195 unbenlem 16590 fiinopn 22031 cmpsublem 22531 dvcnvrelem1 25162 axcontlem4 27316 axcont 27325 spansncol 29909 atcvat4i 30738 sumdmdlem 30759 nocvxminlem 33951 broutsideof2 34403 relowlpssretop 35514 cvrat4 37436 pm2.43cbi 42091 |
Copyright terms: Public domain | W3C validator |