Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo1cl Structured version   Visualization version   GIF version

Theorem rngo1cl 37989
Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring1cl.1 𝑋 = ran (1st𝑅)
ring1cl.2 𝐻 = (2nd𝑅)
ring1cl.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngo1cl (𝑅 ∈ RingOps → 𝑈𝑋)

Proof of Theorem rngo1cl
StepHypRef Expression
1 ring1cl.2 . . . . . 6 𝐻 = (2nd𝑅)
21rngomndo 37985 . . . . 5 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
31eleq1i 2822 . . . . . 6 (𝐻 ∈ MndOp ↔ (2nd𝑅) ∈ MndOp)
4 mndoismgmOLD 37920 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ Magma)
5 mndoisexid 37919 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ ExId )
64, 5jca 511 . . . . . 6 ((2nd𝑅) ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
73, 6sylbi 217 . . . . 5 (𝐻 ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
82, 7syl 17 . . . 4 (𝑅 ∈ RingOps → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
9 elin 3913 . . . 4 ((2nd𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
108, 9sylibr 234 . . 3 (𝑅 ∈ RingOps → (2nd𝑅) ∈ (Magma ∩ ExId ))
11 eqid 2731 . . . 4 ran (2nd𝑅) = ran (2nd𝑅)
12 ring1cl.3 . . . . 5 𝑈 = (GId‘𝐻)
131fveq2i 6825 . . . . 5 (GId‘𝐻) = (GId‘(2nd𝑅))
1412, 13eqtri 2754 . . . 4 𝑈 = (GId‘(2nd𝑅))
1511, 14iorlid 37908 . . 3 ((2nd𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd𝑅))
1610, 15syl 17 . 2 (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd𝑅))
17 ring1cl.1 . . 3 𝑋 = ran (1st𝑅)
18 eqid 2731 . . . 4 (2nd𝑅) = (2nd𝑅)
19 eqid 2731 . . . 4 (1st𝑅) = (1st𝑅)
2018, 19rngorn1eq 37984 . . 3 (𝑅 ∈ RingOps → ran (1st𝑅) = ran (2nd𝑅))
21 eqtr 2751 . . . 4 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → 𝑋 = ran (2nd𝑅))
2221eleq2d 2817 . . 3 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2317, 20, 22sylancr 587 . 2 (𝑅 ∈ RingOps → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2416, 23mpbird 257 1 (𝑅 ∈ RingOps → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  ran crn 5615  cfv 6481  1st c1st 7919  2nd c2nd 7920  GIdcgi 30470   ExId cexid 37894  Magmacmagm 37898  MndOpcmndo 37916  RingOpscrngo 37944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-grpo 30473  df-gid 30474  df-ablo 30525  df-ass 37893  df-exid 37895  df-mgmOLD 37899  df-sgrOLD 37911  df-mndo 37917  df-rngo 37945
This theorem is referenced by:  rngoueqz  37990  rngonegmn1l  37991  rngonegmn1r  37992  rngoneglmul  37993  rngonegrmul  37994  isdrngo2  38008  rngohomco  38024  rngoisocnv  38031  idlnegcl  38072  1idl  38076  0rngo  38077  smprngopr  38102  prnc  38117  isfldidl  38118  isdmn3  38124
  Copyright terms: Public domain W3C validator