| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | 1 | rngomndo 37964 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 3 | 1 | eleq1i 2826 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
| 4 | mndoismgmOLD 37899 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
| 5 | mndoisexid 37898 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
| 6 | 4, 5 | jca 511 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 7 | 3, 6 | sylbi 217 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 9 | elin 3947 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
| 11 | eqid 2736 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
| 12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 13 | 1 | fveq2i 6884 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
| 14 | 12, 13 | eqtri 2759 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
| 15 | 11, 14 | iorlid 37887 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 18 | eqid 2736 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 19 | eqid 2736 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 20 | 18, 19 | rngorn1eq 37963 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
| 21 | eqtr 2756 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
| 22 | 21 | eleq2d 2821 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 23 | 17, 20, 22 | sylancr 587 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ran crn 5660 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 GIdcgi 30476 ExId cexid 37873 Magmacmagm 37877 MndOpcmndo 37895 RingOpscrngo 37923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-riota 7367 df-ov 7413 df-1st 7993 df-2nd 7994 df-grpo 30479 df-gid 30480 df-ablo 30531 df-ass 37872 df-exid 37874 df-mgmOLD 37878 df-sgrOLD 37890 df-mndo 37896 df-rngo 37924 |
| This theorem is referenced by: rngoueqz 37969 rngonegmn1l 37970 rngonegmn1r 37971 rngoneglmul 37972 rngonegrmul 37973 isdrngo2 37987 rngohomco 38003 rngoisocnv 38010 idlnegcl 38051 1idl 38055 0rngo 38056 smprngopr 38081 prnc 38096 isfldidl 38097 isdmn3 38103 |
| Copyright terms: Public domain | W3C validator |