![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version |
Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 37343 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | 1 | eleq1i 2819 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
4 | mndoismgmOLD 37278 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
5 | mndoisexid 37277 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
6 | 4, 5 | jca 511 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
7 | 3, 6 | sylbi 216 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
9 | elin 3960 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
11 | eqid 2727 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
13 | 1 | fveq2i 6894 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
14 | 12, 13 | eqtri 2755 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
15 | 11, 14 | iorlid 37266 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
18 | eqid 2727 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
19 | eqid 2727 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
20 | 18, 19 | rngorn1eq 37342 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
21 | eqtr 2750 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
22 | 21 | eleq2d 2814 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
23 | 17, 20, 22 | sylancr 586 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3943 ran crn 5673 ‘cfv 6542 1st c1st 7985 2nd c2nd 7986 GIdcgi 30287 ExId cexid 37252 Magmacmagm 37256 MndOpcmndo 37274 RingOpscrngo 37302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-riota 7370 df-ov 7417 df-1st 7987 df-2nd 7988 df-grpo 30290 df-gid 30291 df-ablo 30342 df-ass 37251 df-exid 37253 df-mgmOLD 37257 df-sgrOLD 37269 df-mndo 37275 df-rngo 37303 |
This theorem is referenced by: rngoueqz 37348 rngonegmn1l 37349 rngonegmn1r 37350 rngoneglmul 37351 rngonegrmul 37352 isdrngo2 37366 rngohomco 37382 rngoisocnv 37389 idlnegcl 37430 1idl 37434 0rngo 37435 smprngopr 37460 prnc 37475 isfldidl 37476 isdmn3 37482 |
Copyright terms: Public domain | W3C validator |