| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | 1 | rngomndo 37919 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 3 | 1 | eleq1i 2819 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
| 4 | mndoismgmOLD 37854 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
| 5 | mndoisexid 37853 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
| 6 | 4, 5 | jca 511 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 7 | 3, 6 | sylbi 217 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 9 | elin 3919 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
| 11 | eqid 2729 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
| 12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 13 | 1 | fveq2i 6825 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
| 14 | 12, 13 | eqtri 2752 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
| 15 | 11, 14 | iorlid 37842 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 18 | eqid 2729 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 19 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 20 | 18, 19 | rngorn1eq 37918 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
| 21 | eqtr 2749 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
| 22 | 21 | eleq2d 2814 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 23 | 17, 20, 22 | sylancr 587 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ran crn 5620 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 GIdcgi 30434 ExId cexid 37828 Magmacmagm 37832 MndOpcmndo 37850 RingOpscrngo 37878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-riota 7306 df-ov 7352 df-1st 7924 df-2nd 7925 df-grpo 30437 df-gid 30438 df-ablo 30489 df-ass 37827 df-exid 37829 df-mgmOLD 37833 df-sgrOLD 37845 df-mndo 37851 df-rngo 37879 |
| This theorem is referenced by: rngoueqz 37924 rngonegmn1l 37925 rngonegmn1r 37926 rngoneglmul 37927 rngonegrmul 37928 isdrngo2 37942 rngohomco 37958 rngoisocnv 37965 idlnegcl 38006 1idl 38010 0rngo 38011 smprngopr 38036 prnc 38051 isfldidl 38052 isdmn3 38058 |
| Copyright terms: Public domain | W3C validator |