Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo1cl Structured version   Visualization version   GIF version

Theorem rngo1cl 37923
Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring1cl.1 𝑋 = ran (1st𝑅)
ring1cl.2 𝐻 = (2nd𝑅)
ring1cl.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngo1cl (𝑅 ∈ RingOps → 𝑈𝑋)

Proof of Theorem rngo1cl
StepHypRef Expression
1 ring1cl.2 . . . . . 6 𝐻 = (2nd𝑅)
21rngomndo 37919 . . . . 5 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
31eleq1i 2819 . . . . . 6 (𝐻 ∈ MndOp ↔ (2nd𝑅) ∈ MndOp)
4 mndoismgmOLD 37854 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ Magma)
5 mndoisexid 37853 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ ExId )
64, 5jca 511 . . . . . 6 ((2nd𝑅) ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
73, 6sylbi 217 . . . . 5 (𝐻 ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
82, 7syl 17 . . . 4 (𝑅 ∈ RingOps → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
9 elin 3919 . . . 4 ((2nd𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
108, 9sylibr 234 . . 3 (𝑅 ∈ RingOps → (2nd𝑅) ∈ (Magma ∩ ExId ))
11 eqid 2729 . . . 4 ran (2nd𝑅) = ran (2nd𝑅)
12 ring1cl.3 . . . . 5 𝑈 = (GId‘𝐻)
131fveq2i 6825 . . . . 5 (GId‘𝐻) = (GId‘(2nd𝑅))
1412, 13eqtri 2752 . . . 4 𝑈 = (GId‘(2nd𝑅))
1511, 14iorlid 37842 . . 3 ((2nd𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd𝑅))
1610, 15syl 17 . 2 (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd𝑅))
17 ring1cl.1 . . 3 𝑋 = ran (1st𝑅)
18 eqid 2729 . . . 4 (2nd𝑅) = (2nd𝑅)
19 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
2018, 19rngorn1eq 37918 . . 3 (𝑅 ∈ RingOps → ran (1st𝑅) = ran (2nd𝑅))
21 eqtr 2749 . . . 4 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → 𝑋 = ran (2nd𝑅))
2221eleq2d 2814 . . 3 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2317, 20, 22sylancr 587 . 2 (𝑅 ∈ RingOps → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2416, 23mpbird 257 1 (𝑅 ∈ RingOps → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3902  ran crn 5620  cfv 6482  1st c1st 7922  2nd c2nd 7923  GIdcgi 30434   ExId cexid 37828  Magmacmagm 37832  MndOpcmndo 37850  RingOpscrngo 37878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-ov 7352  df-1st 7924  df-2nd 7925  df-grpo 30437  df-gid 30438  df-ablo 30489  df-ass 37827  df-exid 37829  df-mgmOLD 37833  df-sgrOLD 37845  df-mndo 37851  df-rngo 37879
This theorem is referenced by:  rngoueqz  37924  rngonegmn1l  37925  rngonegmn1r  37926  rngoneglmul  37927  rngonegrmul  37928  isdrngo2  37942  rngohomco  37958  rngoisocnv  37965  idlnegcl  38006  1idl  38010  0rngo  38011  smprngopr  38036  prnc  38051  isfldidl  38052  isdmn3  38058
  Copyright terms: Public domain W3C validator