![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version |
Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 36798 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | 1 | eleq1i 2824 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
4 | mndoismgmOLD 36733 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
5 | mndoisexid 36732 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
6 | 4, 5 | jca 512 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
7 | 3, 6 | sylbi 216 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
9 | elin 3964 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
11 | eqid 2732 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
13 | 1 | fveq2i 6894 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
14 | 12, 13 | eqtri 2760 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
15 | 11, 14 | iorlid 36721 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
18 | eqid 2732 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
19 | eqid 2732 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
20 | 18, 19 | rngorn1eq 36797 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
21 | eqtr 2755 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
22 | 21 | eleq2d 2819 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
23 | 17, 20, 22 | sylancr 587 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
24 | 16, 23 | mpbird 256 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3947 ran crn 5677 ‘cfv 6543 1st c1st 7972 2nd c2nd 7973 GIdcgi 29738 ExId cexid 36707 Magmacmagm 36711 MndOpcmndo 36729 RingOpscrngo 36757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-riota 7364 df-ov 7411 df-1st 7974 df-2nd 7975 df-grpo 29741 df-gid 29742 df-ablo 29793 df-ass 36706 df-exid 36708 df-mgmOLD 36712 df-sgrOLD 36724 df-mndo 36730 df-rngo 36758 |
This theorem is referenced by: rngoueqz 36803 rngonegmn1l 36804 rngonegmn1r 36805 rngoneglmul 36806 rngonegrmul 36807 isdrngo2 36821 rngohomco 36837 rngoisocnv 36844 idlnegcl 36885 1idl 36889 0rngo 36890 smprngopr 36915 prnc 36930 isfldidl 36931 isdmn3 36937 |
Copyright terms: Public domain | W3C validator |