Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo1cl Structured version   Visualization version   GIF version

Theorem rngo1cl 37899
Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring1cl.1 𝑋 = ran (1st𝑅)
ring1cl.2 𝐻 = (2nd𝑅)
ring1cl.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngo1cl (𝑅 ∈ RingOps → 𝑈𝑋)

Proof of Theorem rngo1cl
StepHypRef Expression
1 ring1cl.2 . . . . . 6 𝐻 = (2nd𝑅)
21rngomndo 37895 . . . . 5 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
31eleq1i 2835 . . . . . 6 (𝐻 ∈ MndOp ↔ (2nd𝑅) ∈ MndOp)
4 mndoismgmOLD 37830 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ Magma)
5 mndoisexid 37829 . . . . . . 7 ((2nd𝑅) ∈ MndOp → (2nd𝑅) ∈ ExId )
64, 5jca 511 . . . . . 6 ((2nd𝑅) ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
73, 6sylbi 217 . . . . 5 (𝐻 ∈ MndOp → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
82, 7syl 17 . . . 4 (𝑅 ∈ RingOps → ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
9 elin 3992 . . . 4 ((2nd𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd𝑅) ∈ Magma ∧ (2nd𝑅) ∈ ExId ))
108, 9sylibr 234 . . 3 (𝑅 ∈ RingOps → (2nd𝑅) ∈ (Magma ∩ ExId ))
11 eqid 2740 . . . 4 ran (2nd𝑅) = ran (2nd𝑅)
12 ring1cl.3 . . . . 5 𝑈 = (GId‘𝐻)
131fveq2i 6923 . . . . 5 (GId‘𝐻) = (GId‘(2nd𝑅))
1412, 13eqtri 2768 . . . 4 𝑈 = (GId‘(2nd𝑅))
1511, 14iorlid 37818 . . 3 ((2nd𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd𝑅))
1610, 15syl 17 . 2 (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd𝑅))
17 ring1cl.1 . . 3 𝑋 = ran (1st𝑅)
18 eqid 2740 . . . 4 (2nd𝑅) = (2nd𝑅)
19 eqid 2740 . . . 4 (1st𝑅) = (1st𝑅)
2018, 19rngorn1eq 37894 . . 3 (𝑅 ∈ RingOps → ran (1st𝑅) = ran (2nd𝑅))
21 eqtr 2763 . . . 4 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → 𝑋 = ran (2nd𝑅))
2221eleq2d 2830 . . 3 ((𝑋 = ran (1st𝑅) ∧ ran (1st𝑅) = ran (2nd𝑅)) → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2317, 20, 22sylancr 586 . 2 (𝑅 ∈ RingOps → (𝑈𝑋𝑈 ∈ ran (2nd𝑅)))
2416, 23mpbird 257 1 (𝑅 ∈ RingOps → 𝑈𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  ran crn 5701  cfv 6573  1st c1st 8028  2nd c2nd 8029  GIdcgi 30522   ExId cexid 37804  Magmacmagm 37808  MndOpcmndo 37826  RingOpscrngo 37854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ablo 30577  df-ass 37803  df-exid 37805  df-mgmOLD 37809  df-sgrOLD 37821  df-mndo 37827  df-rngo 37855
This theorem is referenced by:  rngoueqz  37900  rngonegmn1l  37901  rngonegmn1r  37902  rngoneglmul  37903  rngonegrmul  37904  isdrngo2  37918  rngohomco  37934  rngoisocnv  37941  idlnegcl  37982  1idl  37986  0rngo  37987  smprngopr  38012  prnc  38027  isfldidl  38028  isdmn3  38034
  Copyright terms: Public domain W3C validator