| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | 1 | rngomndo 37929 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 3 | 1 | eleq1i 2819 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
| 4 | mndoismgmOLD 37864 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
| 5 | mndoisexid 37863 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
| 6 | 4, 5 | jca 511 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 7 | 3, 6 | sylbi 217 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
| 9 | elin 3930 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
| 11 | eqid 2729 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
| 12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 13 | 1 | fveq2i 6861 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
| 14 | 12, 13 | eqtri 2752 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
| 15 | 11, 14 | iorlid 37852 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
| 17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 18 | eqid 2729 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 19 | eqid 2729 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 20 | 18, 19 | rngorn1eq 37928 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
| 21 | eqtr 2749 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
| 22 | 21 | eleq2d 2814 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 23 | 17, 20, 22 | sylancr 587 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
| 24 | 16, 23 | mpbird 257 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ran crn 5639 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 GIdcgi 30419 ExId cexid 37838 Magmacmagm 37842 MndOpcmndo 37860 RingOpscrngo 37888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-riota 7344 df-ov 7390 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gid 30423 df-ablo 30474 df-ass 37837 df-exid 37839 df-mgmOLD 37843 df-sgrOLD 37855 df-mndo 37861 df-rngo 37889 |
| This theorem is referenced by: rngoueqz 37934 rngonegmn1l 37935 rngonegmn1r 37936 rngoneglmul 37937 rngonegrmul 37938 isdrngo2 37952 rngohomco 37968 rngoisocnv 37975 idlnegcl 38016 1idl 38020 0rngo 38021 smprngopr 38046 prnc 38061 isfldidl 38062 isdmn3 38068 |
| Copyright terms: Public domain | W3C validator |