Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version |
Description: The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 35866 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | 1 | eleq1i 2830 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
4 | mndoismgmOLD 35801 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
5 | mndoisexid 35800 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
6 | 4, 5 | jca 515 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
7 | 3, 6 | sylbi 220 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
9 | elin 3899 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
10 | 8, 9 | sylibr 237 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
11 | eqid 2739 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
13 | 1 | fveq2i 6741 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
14 | 12, 13 | eqtri 2767 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
15 | 11, 14 | iorlid 35789 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
18 | eqid 2739 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
19 | eqid 2739 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
20 | 18, 19 | rngorn1eq 35865 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
21 | eqtr 2762 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
22 | 21 | eleq2d 2825 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
23 | 17, 20, 22 | sylancr 590 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
24 | 16, 23 | mpbird 260 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∩ cin 3882 ran crn 5569 ‘cfv 6400 1st c1st 7780 2nd c2nd 7781 GIdcgi 28602 ExId cexid 35775 Magmacmagm 35779 MndOpcmndo 35797 RingOpscrngo 35825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pr 5338 ax-un 7544 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4456 df-sn 4558 df-pr 4560 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-id 5471 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-fo 6406 df-fv 6408 df-riota 7191 df-ov 7237 df-1st 7782 df-2nd 7783 df-grpo 28605 df-gid 28606 df-ablo 28657 df-ass 35774 df-exid 35776 df-mgmOLD 35780 df-sgrOLD 35792 df-mndo 35798 df-rngo 35826 |
This theorem is referenced by: rngoueqz 35871 rngonegmn1l 35872 rngonegmn1r 35873 rngoneglmul 35874 rngonegrmul 35875 isdrngo2 35889 rngohomco 35905 rngoisocnv 35912 idlnegcl 35953 1idl 35957 0rngo 35958 smprngopr 35983 prnc 35998 isfldidl 35999 isdmn3 36005 |
Copyright terms: Public domain | W3C validator |