Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngo1cl | Structured version Visualization version GIF version |
Description: The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ring1cl.1 | ⊢ 𝑋 = ran (1st ‘𝑅) |
ring1cl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ring1cl.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngo1cl | ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ring1cl.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | 1 | rngomndo 36020 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
3 | 1 | eleq1i 2829 | . . . . . 6 ⊢ (𝐻 ∈ MndOp ↔ (2nd ‘𝑅) ∈ MndOp) |
4 | mndoismgmOLD 35955 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ Magma) | |
5 | mndoisexid 35954 | . . . . . . 7 ⊢ ((2nd ‘𝑅) ∈ MndOp → (2nd ‘𝑅) ∈ ExId ) | |
6 | 4, 5 | jca 511 | . . . . . 6 ⊢ ((2nd ‘𝑅) ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
7 | 3, 6 | sylbi 216 | . . . . 5 ⊢ (𝐻 ∈ MndOp → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) |
9 | elin 3899 | . . . 4 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) ↔ ((2nd ‘𝑅) ∈ Magma ∧ (2nd ‘𝑅) ∈ ExId )) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝑅 ∈ RingOps → (2nd ‘𝑅) ∈ (Magma ∩ ExId )) |
11 | eqid 2738 | . . . 4 ⊢ ran (2nd ‘𝑅) = ran (2nd ‘𝑅) | |
12 | ring1cl.3 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
13 | 1 | fveq2i 6759 | . . . . 5 ⊢ (GId‘𝐻) = (GId‘(2nd ‘𝑅)) |
14 | 12, 13 | eqtri 2766 | . . . 4 ⊢ 𝑈 = (GId‘(2nd ‘𝑅)) |
15 | 11, 14 | iorlid 35943 | . . 3 ⊢ ((2nd ‘𝑅) ∈ (Magma ∩ ExId ) → 𝑈 ∈ ran (2nd ‘𝑅)) |
16 | 10, 15 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ ran (2nd ‘𝑅)) |
17 | ring1cl.1 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
18 | eqid 2738 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
19 | eqid 2738 | . . . 4 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
20 | 18, 19 | rngorn1eq 36019 | . . 3 ⊢ (𝑅 ∈ RingOps → ran (1st ‘𝑅) = ran (2nd ‘𝑅)) |
21 | eqtr 2761 | . . . 4 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → 𝑋 = ran (2nd ‘𝑅)) | |
22 | 21 | eleq2d 2824 | . . 3 ⊢ ((𝑋 = ran (1st ‘𝑅) ∧ ran (1st ‘𝑅) = ran (2nd ‘𝑅)) → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
23 | 17, 20, 22 | sylancr 586 | . 2 ⊢ (𝑅 ∈ RingOps → (𝑈 ∈ 𝑋 ↔ 𝑈 ∈ ran (2nd ‘𝑅))) |
24 | 16, 23 | mpbird 256 | 1 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ran crn 5581 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GIdcgi 28753 ExId cexid 35929 Magmacmagm 35933 MndOpcmndo 35951 RingOpscrngo 35979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 |
This theorem is referenced by: rngoueqz 36025 rngonegmn1l 36026 rngonegmn1r 36027 rngoneglmul 36028 rngonegrmul 36029 isdrngo2 36043 rngohomco 36059 rngoisocnv 36066 idlnegcl 36107 1idl 36111 0rngo 36112 smprngopr 36137 prnc 36152 isfldidl 36153 isdmn3 36159 |
Copyright terms: Public domain | W3C validator |